Quantum Data Locking for Secure Communication against an Eavesdropper with Time-Limited Storage

Quantum cryptography allows for unconditionally secure communication against an eavesdropper endowed with unlimited computational power and perfect technologies, who is only constrained by the laws of physics. We review recent results showing that, under the assumption that the eavesdropper can stor...

Full description

Bibliographic Details
Main Author: Cosmo Lupo
Format: Article
Language:English
Published: MDPI AG 2015-05-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/17/5/3194
Description
Summary:Quantum cryptography allows for unconditionally secure communication against an eavesdropper endowed with unlimited computational power and perfect technologies, who is only constrained by the laws of physics. We review recent results showing that, under the assumption that the eavesdropper can store quantum information only for a limited time, it is possible to enhance the performance of quantum key distribution in both a quantitative and qualitative fashion. We consider quantum data locking as a cryptographic primitive and discuss secure communication and key distribution protocols. For the case of a lossy optical channel, this yields the theoretical possibility of generating secret key at a constant rate of 1 bit per mode at arbitrarily long communication distances.
ISSN:1099-4300