eys+/-; lrp5+/− Zebrafish Reveals Lrp5 Can Be the Receptor of Retinol in the Visual Cycle

Summary: Vision is essential for vertebrates including humans. Sustained vision is accomplished by retinoid metabolism, the “visual cycle,” where all-trans retinol (atROL) is incorporated into the retinal pigment epithelium (RPE) from photoreceptors presumably through decade-long missing receptor(s)...

Full description

Bibliographic Details
Main Authors: Shimpei Takita, Yuko Seko
Format: Article
Language:English
Published: Elsevier 2020-12-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004220309597
Description
Summary:Summary: Vision is essential for vertebrates including humans. Sustained vision is accomplished by retinoid metabolism, the “visual cycle,” where all-trans retinol (atROL) is incorporated into the retinal pigment epithelium (RPE) from photoreceptors presumably through decade-long missing receptor(s). Here, we show that the LDL-related receptor-5 (Lrp5) protein is linked to the retinol binding protein 1a (Rbp1a), the transporter of atROL in the visual cycle, by generating and analyzing the digenic eyes shut homolog+/-; lrp5+/− zebrafish, the same form of gene defect detected in a human case of inherited retinal degeneration. Global gene expression analysis followed by genetic study clarified that rbp1a played a role downstream of lrp5. Rbp1a protein was colocalized with Lrp5 protein at microvilli of RPE cells. Furthermore, Rbp1a directly bound to the C-terminal intracellular region of Lrp5 in vitro. Collectively, these results strongly suggest that Lrp5 is a potent candidate of the receptor of atROL in the visual cycle.
ISSN:2589-0042