The Atacama toad (Rhinella atacamensis) exhibits an unusual clinal pattern of decreasing body size towards more arid environments

Abstract Background The causes of geographic variation of body size in ectotherms have generally been attributed to environmental variables. Research in amphibians has favored mechanisms that involve water availability as an explanation for the geographic variation of body size. However, there are f...

Full description

Bibliographic Details
Main Authors: Felipe Durán, Marco A. Méndez, Claudio Correa
Format: Article
Language:English
Published: BMC 2021-09-01
Series:BMC Zoology
Subjects:
Online Access:https://doi.org/10.1186/s40850-021-00090-w
Description
Summary:Abstract Background The causes of geographic variation of body size in ectotherms have generally been attributed to environmental variables. Research in amphibians has favored mechanisms that involve water availability as an explanation for the geographic variation of body size. However, there are few studies at intraspecific level on amphibians that inhabit desert or semi-desert environments, where hydric restrictions are stronger. Here, we describe and inquire as to the causes of the geographic variation of body size in the semi-desert toad Rhinella atacamensis, a terrestrial anuran that is distributed over 750 km along a latitudinal aridity gradient from the southern extreme of the Atacama Desert to the Mediterranean region of central Chile. We measured the snout-vent length of 315 adults from 11 representative localities of the entire distribution of the species. Then, using an information-theoretic approach, we evaluate whether the data support eight ecogeographic hypotheses proposed in literature. Results Rhinella atacamensis exhibits a gradual pattern of decrease in adult body size towards the north of its distribution, where the climate is more arid, which conforms to a Bergmann’s cline. The best model showed that the data support the mean annual precipitation as predictor of body size, favoring the converse water availability hypothesis. Conclusions Most studies in amphibians show that adult size increases in arid environments, but we found a converse pattern to expected according to the hydric constraints imposed by this type of environment. The evidence in R. atacamensis favors the converse water availability hypothesis, whose mechanism proposes that the foraging activity determined by the precipitation gradient has produced the clinal pattern of body size variation. The variation of this trait could also be affected by the decreasing productivity that exists towards the north of the species distribution. In addition, we found evidence that both pattern and mechanism are independent of sex. Lastly, we suggest that behavioral traits, such as nocturnal habits, might also play an important role determining this differential response to aridity. Therefore, the support for the converse water availability hypothesis found in this study shows that amphibians can respond in different ways to water restrictions imposed by arid environments.
ISSN:2056-3132