Modeling and Fault Propagation Analysis of Cyber–Physical Power System

In cyber−physical power systems (CPPSs), the interaction mechanisms between physical systems and cyber systems are becoming more and more complicated. Their deep integration has brought new unstable factors to the system. Faults or attacks may cause a chain reaction, such as control failur...

Full description

Bibliographic Details
Main Authors: Xiaoxiao Guo, Yanghong Tan, Feng Wang
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/3/539
Description
Summary:In cyber−physical power systems (CPPSs), the interaction mechanisms between physical systems and cyber systems are becoming more and more complicated. Their deep integration has brought new unstable factors to the system. Faults or attacks may cause a chain reaction, such as control failure, state deterioration, or even outage, which seriously threatens the safe and stable operation of power grids. In this paper, given the interaction mechanisms, we propose an interdependent model of CPPS, based on a characteristic association method. Utilizing this model, we can study the fault propagation mechanisms when faulty or under cyber-attack. Simulation results quantitatively reveal the propagation process of fault risks and the impacts on the CPPS due to the change of state quantity of the system model.
ISSN:1996-1073