The effects of free amino acids profiles on seeds germination/dormancy and seedlings development of two genetically different cultivars of Yemeni Pomegranates

Plant seeds used rely on a wide range of internal mechanisms and physio-chemical factors to ensure their germination under favorable environmental conditions. Most plant seeds have complex process of germination, including water, oxygen, temperature availability, genome-wide gene expression, signal...

Full description

Bibliographic Details
Main Authors: Alhadi Fatima A., Adnan A.S. AL-Asbahi, Arif S.A. Alhammadi, Qais A.A. Abdullah
Format: Article
Language:English
Published: "Vikol publishing" ST Kolesnichenko V.V. 2012-04-01
Series:Journal of Stress Physiology & Biochemistry
Subjects:
Online Access:http://www.jspb.ru/issues/2012/N1/JSPB_2012_1_114-137.pdf
id doaj-400e31414c2c41499483292a22fb4fcb
record_format Article
spelling doaj-400e31414c2c41499483292a22fb4fcb2020-11-24T22:38:13Zeng"Vikol publishing" ST Kolesnichenko V.V. Journal of Stress Physiology & Biochemistry1997-08382012-04-0181114137The effects of free amino acids profiles on seeds germination/dormancy and seedlings development of two genetically different cultivars of Yemeni Pomegranates Alhadi Fatima A.Adnan A.S. AL-AsbahiArif S.A. AlhammadiQais A.A. AbdullahPlant seeds used rely on a wide range of internal mechanisms and physio-chemical factors to ensure their germination under favorable environmental conditions. Most plant seeds have complex process of germination, including water, oxygen, temperature availability, genome-wide gene expression, signal transduction, hormones stimulations, inhibitors removal and catalytic protein synthesis. In addition, influences of seeds nutrient values such as, protein, lipids, sugars and free amino acids have a special importance. Regarding, seeds free amino acids. Discussion of these individual factors needs to be put in context of their role in germination processes. Regarding, free amino acids seed storage, there is limited information about their relevant functions in activation and/or deactivation of required metabolic mechanisms and interactive compounds involved in this process in commercial plant cultivars. Therefore, current study was aimed to determine the probable influence of free amino acid compositions of seeds on germination process of two different (Punica granatum L.) pomegranate cultivars including wild type Automi cultivar and edible Khazemi cultivar. In particular, we focused on the impact of amino acids contents variations on germination process and associated AAs compositional changes during various stages of germination and seedlings establishment. Amino acid analysis using HPLC detected all the essential and non-essential amino acids in the raw seeds of the studied cultivars, Automi and Khazemi along with AAs compositional changes occurred during different stages of seed germination. These AAs have been extensively analyzed in the context of their role in dormancy breaking capacities in plants species. Automi raw seeds are rich in Phe, that, is strongly related to ABA synthesis and hence might be responsible for the dormancy of Automi seeds, Khazemi raw seeds have sufficient levels of Arg, Glu and Met that have been reported to enhance seeds germination in plant, therefore Khazemi germination capacity was assumed to be regulated more or less by these AAs. In addition, changes in amino acid composition in the germinated Khazemi cultivar during various stages of seeds germination including imbibition, germination, and sprouts stages have been noticed to change in response with germination demands. This suggests that amino acids reserves in dry seeds are major determinant for germination capacity and germination behavior in the following steps of germination. The noticed particular AAs increase/decrease along the time course of Khazemi pomegranate germination till establishment of heterotrophic seedlings were used as cornerstones for elucidation and deduction of putative function and relevant biochemical pathways controlling initiation of seeds germination and seedlings developments. Based on publicly available databases of model plants and literatures surveys, we established correlations between prevailing AAs factors as biochemical parameters actively involved in seeds dormancy-breaking and germination process. http://www.jspb.ru/issues/2012/N1/JSPB_2012_1_114-137.pdfAmino acids (AAs)pomegranate seedsgerminationdormancyarginineHPLC
collection DOAJ
language English
format Article
sources DOAJ
author Alhadi Fatima A.
Adnan A.S. AL-Asbahi
Arif S.A. Alhammadi
Qais A.A. Abdullah
spellingShingle Alhadi Fatima A.
Adnan A.S. AL-Asbahi
Arif S.A. Alhammadi
Qais A.A. Abdullah
The effects of free amino acids profiles on seeds germination/dormancy and seedlings development of two genetically different cultivars of Yemeni Pomegranates
Journal of Stress Physiology & Biochemistry
Amino acids (AAs)
pomegranate seeds
germination
dormancy
arginine
HPLC
author_facet Alhadi Fatima A.
Adnan A.S. AL-Asbahi
Arif S.A. Alhammadi
Qais A.A. Abdullah
author_sort Alhadi Fatima A.
title The effects of free amino acids profiles on seeds germination/dormancy and seedlings development of two genetically different cultivars of Yemeni Pomegranates
title_short The effects of free amino acids profiles on seeds germination/dormancy and seedlings development of two genetically different cultivars of Yemeni Pomegranates
title_full The effects of free amino acids profiles on seeds germination/dormancy and seedlings development of two genetically different cultivars of Yemeni Pomegranates
title_fullStr The effects of free amino acids profiles on seeds germination/dormancy and seedlings development of two genetically different cultivars of Yemeni Pomegranates
title_full_unstemmed The effects of free amino acids profiles on seeds germination/dormancy and seedlings development of two genetically different cultivars of Yemeni Pomegranates
title_sort effects of free amino acids profiles on seeds germination/dormancy and seedlings development of two genetically different cultivars of yemeni pomegranates
publisher "Vikol publishing" ST Kolesnichenko V.V.
series Journal of Stress Physiology & Biochemistry
issn 1997-0838
publishDate 2012-04-01
description Plant seeds used rely on a wide range of internal mechanisms and physio-chemical factors to ensure their germination under favorable environmental conditions. Most plant seeds have complex process of germination, including water, oxygen, temperature availability, genome-wide gene expression, signal transduction, hormones stimulations, inhibitors removal and catalytic protein synthesis. In addition, influences of seeds nutrient values such as, protein, lipids, sugars and free amino acids have a special importance. Regarding, seeds free amino acids. Discussion of these individual factors needs to be put in context of their role in germination processes. Regarding, free amino acids seed storage, there is limited information about their relevant functions in activation and/or deactivation of required metabolic mechanisms and interactive compounds involved in this process in commercial plant cultivars. Therefore, current study was aimed to determine the probable influence of free amino acid compositions of seeds on germination process of two different (Punica granatum L.) pomegranate cultivars including wild type Automi cultivar and edible Khazemi cultivar. In particular, we focused on the impact of amino acids contents variations on germination process and associated AAs compositional changes during various stages of germination and seedlings establishment. Amino acid analysis using HPLC detected all the essential and non-essential amino acids in the raw seeds of the studied cultivars, Automi and Khazemi along with AAs compositional changes occurred during different stages of seed germination. These AAs have been extensively analyzed in the context of their role in dormancy breaking capacities in plants species. Automi raw seeds are rich in Phe, that, is strongly related to ABA synthesis and hence might be responsible for the dormancy of Automi seeds, Khazemi raw seeds have sufficient levels of Arg, Glu and Met that have been reported to enhance seeds germination in plant, therefore Khazemi germination capacity was assumed to be regulated more or less by these AAs. In addition, changes in amino acid composition in the germinated Khazemi cultivar during various stages of seeds germination including imbibition, germination, and sprouts stages have been noticed to change in response with germination demands. This suggests that amino acids reserves in dry seeds are major determinant for germination capacity and germination behavior in the following steps of germination. The noticed particular AAs increase/decrease along the time course of Khazemi pomegranate germination till establishment of heterotrophic seedlings were used as cornerstones for elucidation and deduction of putative function and relevant biochemical pathways controlling initiation of seeds germination and seedlings developments. Based on publicly available databases of model plants and literatures surveys, we established correlations between prevailing AAs factors as biochemical parameters actively involved in seeds dormancy-breaking and germination process.
topic Amino acids (AAs)
pomegranate seeds
germination
dormancy
arginine
HPLC
url http://www.jspb.ru/issues/2012/N1/JSPB_2012_1_114-137.pdf
work_keys_str_mv AT alhadifatimaa theeffectsoffreeaminoacidsprofilesonseedsgerminationdormancyandseedlingsdevelopmentoftwogeneticallydifferentcultivarsofyemenipomegranates
AT adnanasalasbahi theeffectsoffreeaminoacidsprofilesonseedsgerminationdormancyandseedlingsdevelopmentoftwogeneticallydifferentcultivarsofyemenipomegranates
AT arifsaalhammadi theeffectsoffreeaminoacidsprofilesonseedsgerminationdormancyandseedlingsdevelopmentoftwogeneticallydifferentcultivarsofyemenipomegranates
AT qaisaaabdullah theeffectsoffreeaminoacidsprofilesonseedsgerminationdormancyandseedlingsdevelopmentoftwogeneticallydifferentcultivarsofyemenipomegranates
AT alhadifatimaa effectsoffreeaminoacidsprofilesonseedsgerminationdormancyandseedlingsdevelopmentoftwogeneticallydifferentcultivarsofyemenipomegranates
AT adnanasalasbahi effectsoffreeaminoacidsprofilesonseedsgerminationdormancyandseedlingsdevelopmentoftwogeneticallydifferentcultivarsofyemenipomegranates
AT arifsaalhammadi effectsoffreeaminoacidsprofilesonseedsgerminationdormancyandseedlingsdevelopmentoftwogeneticallydifferentcultivarsofyemenipomegranates
AT qaisaaabdullah effectsoffreeaminoacidsprofilesonseedsgerminationdormancyandseedlingsdevelopmentoftwogeneticallydifferentcultivarsofyemenipomegranates
_version_ 1725714076839968768