A low power flexible dielectric barrier discharge disinfects surfaces and improves the action of hydrogen peroxide

Abstract There is an urgent need for disinfection and sterilization devices accessible to the public that can be fulfilled by innovative strategies for using cold atmospheric pressure plasmas. Here, we demonstrate a successful novel combination of a flexible printed circuit design of a dielectric ba...

Full description

Bibliographic Details
Main Authors: Sophia Gershman, Maria B. Harreguy, Shurik Yatom, Yevgeny Raitses, Phillip Efthimion, Gal Haspel
Format: Article
Language:English
Published: Nature Publishing Group 2021-02-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-021-84086-z
id doaj-4002af737b1f4778b16386699271bc39
record_format Article
spelling doaj-4002af737b1f4778b16386699271bc392021-03-11T12:14:13ZengNature Publishing GroupScientific Reports2045-23222021-02-0111111210.1038/s41598-021-84086-zA low power flexible dielectric barrier discharge disinfects surfaces and improves the action of hydrogen peroxideSophia Gershman0Maria B. Harreguy1Shurik Yatom2Yevgeny Raitses3Phillip Efthimion4Gal Haspel5Princeton Plasma Physics LaboratoryDepartment of Biological Sciences, New Jersey Institute of TechnologyPrinceton Plasma Physics LaboratoryPrinceton Plasma Physics LaboratoryPrinceton Plasma Physics LaboratoryDepartment of Biological Sciences, New Jersey Institute of TechnologyAbstract There is an urgent need for disinfection and sterilization devices accessible to the public that can be fulfilled by innovative strategies for using cold atmospheric pressure plasmas. Here, we demonstrate a successful novel combination of a flexible printed circuit design of a dielectric barrier discharge (flex-DBD) with an environmentally safe chemical reagent for surface decontamination from bacterial contaminants. Flex-DBD operates in ambient air, atmospheric pressure, and room temperature without any additional gas flow at a power density not exceeding 0.5 W/cm2. The flex-DBD activation of a 3% hydrogen peroxide solution results in the reduction in the bacterial load of a surface contaminant of > 6log10 in 90 s, about 3log10 and 2log10 better than hydrogen peroxide alone or the flex-DBD alone, respectively, for the same treatment time. We propose that the synergy between plasma and hydrogen peroxide is based on the combined action of plasma-generated OH · radicals in the hydrogen peroxide solution and the reactive nitrogen species supplied by the plasma effluent. A scavenger method verified a significant increase in OH · concentration due to plasma treatment. Novel in-situ FTIR absorption spectra show the presence of O3, NO2, N2O, and other nitrogen species. Ozone dissolving in the H2O2 solution can effectively generate OH · through a peroxone process. The addition of the reactive nitrogen species increases the disinfection efficiency of the hydroxyl radicals and other oxygen species. Hence, plasma activation of a low concentration hydrogen peroxide solution, using a hand-held flexible DBD device results in a dramatic improvement in disinfection.https://doi.org/10.1038/s41598-021-84086-z
collection DOAJ
language English
format Article
sources DOAJ
author Sophia Gershman
Maria B. Harreguy
Shurik Yatom
Yevgeny Raitses
Phillip Efthimion
Gal Haspel
spellingShingle Sophia Gershman
Maria B. Harreguy
Shurik Yatom
Yevgeny Raitses
Phillip Efthimion
Gal Haspel
A low power flexible dielectric barrier discharge disinfects surfaces and improves the action of hydrogen peroxide
Scientific Reports
author_facet Sophia Gershman
Maria B. Harreguy
Shurik Yatom
Yevgeny Raitses
Phillip Efthimion
Gal Haspel
author_sort Sophia Gershman
title A low power flexible dielectric barrier discharge disinfects surfaces and improves the action of hydrogen peroxide
title_short A low power flexible dielectric barrier discharge disinfects surfaces and improves the action of hydrogen peroxide
title_full A low power flexible dielectric barrier discharge disinfects surfaces and improves the action of hydrogen peroxide
title_fullStr A low power flexible dielectric barrier discharge disinfects surfaces and improves the action of hydrogen peroxide
title_full_unstemmed A low power flexible dielectric barrier discharge disinfects surfaces and improves the action of hydrogen peroxide
title_sort low power flexible dielectric barrier discharge disinfects surfaces and improves the action of hydrogen peroxide
publisher Nature Publishing Group
series Scientific Reports
issn 2045-2322
publishDate 2021-02-01
description Abstract There is an urgent need for disinfection and sterilization devices accessible to the public that can be fulfilled by innovative strategies for using cold atmospheric pressure plasmas. Here, we demonstrate a successful novel combination of a flexible printed circuit design of a dielectric barrier discharge (flex-DBD) with an environmentally safe chemical reagent for surface decontamination from bacterial contaminants. Flex-DBD operates in ambient air, atmospheric pressure, and room temperature without any additional gas flow at a power density not exceeding 0.5 W/cm2. The flex-DBD activation of a 3% hydrogen peroxide solution results in the reduction in the bacterial load of a surface contaminant of > 6log10 in 90 s, about 3log10 and 2log10 better than hydrogen peroxide alone or the flex-DBD alone, respectively, for the same treatment time. We propose that the synergy between plasma and hydrogen peroxide is based on the combined action of plasma-generated OH · radicals in the hydrogen peroxide solution and the reactive nitrogen species supplied by the plasma effluent. A scavenger method verified a significant increase in OH · concentration due to plasma treatment. Novel in-situ FTIR absorption spectra show the presence of O3, NO2, N2O, and other nitrogen species. Ozone dissolving in the H2O2 solution can effectively generate OH · through a peroxone process. The addition of the reactive nitrogen species increases the disinfection efficiency of the hydroxyl radicals and other oxygen species. Hence, plasma activation of a low concentration hydrogen peroxide solution, using a hand-held flexible DBD device results in a dramatic improvement in disinfection.
url https://doi.org/10.1038/s41598-021-84086-z
work_keys_str_mv AT sophiagershman alowpowerflexibledielectricbarrierdischargedisinfectssurfacesandimprovestheactionofhydrogenperoxide
AT mariabharreguy alowpowerflexibledielectricbarrierdischargedisinfectssurfacesandimprovestheactionofhydrogenperoxide
AT shurikyatom alowpowerflexibledielectricbarrierdischargedisinfectssurfacesandimprovestheactionofhydrogenperoxide
AT yevgenyraitses alowpowerflexibledielectricbarrierdischargedisinfectssurfacesandimprovestheactionofhydrogenperoxide
AT phillipefthimion alowpowerflexibledielectricbarrierdischargedisinfectssurfacesandimprovestheactionofhydrogenperoxide
AT galhaspel alowpowerflexibledielectricbarrierdischargedisinfectssurfacesandimprovestheactionofhydrogenperoxide
AT sophiagershman lowpowerflexibledielectricbarrierdischargedisinfectssurfacesandimprovestheactionofhydrogenperoxide
AT mariabharreguy lowpowerflexibledielectricbarrierdischargedisinfectssurfacesandimprovestheactionofhydrogenperoxide
AT shurikyatom lowpowerflexibledielectricbarrierdischargedisinfectssurfacesandimprovestheactionofhydrogenperoxide
AT yevgenyraitses lowpowerflexibledielectricbarrierdischargedisinfectssurfacesandimprovestheactionofhydrogenperoxide
AT phillipefthimion lowpowerflexibledielectricbarrierdischargedisinfectssurfacesandimprovestheactionofhydrogenperoxide
AT galhaspel lowpowerflexibledielectricbarrierdischargedisinfectssurfacesandimprovestheactionofhydrogenperoxide
_version_ 1724224567412523008