On the ranks of Fischer group $Fi_{24}^{,prime}$ and the Baby Monster group $mathbb{B}$

If $G$ is a finite group and $X$ a conjugacy class of‎ ‎elements of $G$‎, ‎then we define $rank(G{:}X)$ to be the minimum‎ ‎number of elements of $X$ generating $G$‎. ‎In the present article‎, ‎we‎ ‎determine the ranks for the Fischer's simple group $Fi_{24}^{prime}$‎ ‎and the baby monster grou...

Full description

Bibliographic Details
Main Authors: Mohammed Ibrahim, Faryad Ali, Mohammed Al-Kadhi, Abdullah Aljouiee
Format: Article
Language:English
Published: University of Isfahan 2019-03-01
Series:International Journal of Group Theory
Subjects:
Online Access:http://ijgt.ui.ac.ir/article_22709_90a14c8661d74f129eb1fe4ba24834bb.pdf
Description
Summary:If $G$ is a finite group and $X$ a conjugacy class of‎ ‎elements of $G$‎, ‎then we define $rank(G{:}X)$ to be the minimum‎ ‎number of elements of $X$ generating $G$‎. ‎In the present article‎, ‎we‎ ‎determine the ranks for the Fischer's simple group $Fi_{24}^{prime}$‎ ‎and the baby monster group $mathbb{B}$‎.
ISSN:2251-7650
2251-7669