On the ranks of Fischer group $Fi_{24}^{,prime}$ and the Baby Monster group $mathbb{B}$
If $G$ is a finite group and $X$ a conjugacy class of elements of $G$, then we define $rank(G{:}X)$ to be the minimum number of elements of $X$ generating $G$. In the present article, we determine the ranks for the Fischer's simple group $Fi_{24}^{prime}$ and the baby monster grou...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Isfahan
2019-03-01
|
Series: | International Journal of Group Theory |
Subjects: | |
Online Access: | http://ijgt.ui.ac.ir/article_22709_90a14c8661d74f129eb1fe4ba24834bb.pdf |
Summary: | If $G$ is a finite group and $X$ a conjugacy class of elements of $G$, then we define $rank(G{:}X)$ to be the minimum number of elements of $X$ generating $G$. In the present article, we determine the ranks for the Fischer's simple group $Fi_{24}^{prime}$ and the baby monster group $mathbb{B}$. |
---|---|
ISSN: | 2251-7650 2251-7669 |