U(6) dynamical and quasi-dynamical symmetry in strongly deformed heavy nuclei

The low-lying collective states of the ground, β and γ bands in 154Sm and 238U are investigated within the framework of the microscopic proton-neutron symplectic model (PNSM). For this purpose, the model Hamiltonian is diagonalized in a U(6)-coupled basis, restricted to the symplectic state space sp...

Full description

Bibliographic Details
Main Author: Ganev H.G.
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:EPJ Web of Conferences
Online Access:https://doi.org/10.1051/epjconf/201819405002
Description
Summary:The low-lying collective states of the ground, β and γ bands in 154Sm and 238U are investigated within the framework of the microscopic proton-neutron symplectic model (PNSM). For this purpose, the model Hamiltonian is diagonalized in a U(6)-coupled basis, restricted to the symplectic state space spanned by the fully symmetric U(6) vectors. A good description of the energy levels of the three bands under consideration, as well as the intraband B(E2) transition strengths between the states of the ground band is obtained for the two nuclei without the use of an effective charge. The calculations show that when the collective quadrupole dynamics is covered already by the symplectic bandhead structure, as in the case of 154Sm, the results show the presence of a very good U(6) dynamical symmetry. In the case of 238U, when we have an observed enhancement of the intraband B(E2) transition strengths, then the results show small admixtures from the higher major shells and a highly coherent mixing of different irreps which is manifested by the presence of a good U(6) quasi-dynamical symmetry in the microscopic structure of the collective states under consideration.
ISSN:2100-014X