Clustering of COVID-19 data for knowledge discovery using c-means and fuzzy c-means
In this work, the partitioning clustering of COVID-19 data using c-Means (cM) and Fuzy c-Means (Fc-M) algorithms is carried out. Based on the data available from January 2020 with respect to location, i.e., longitude and latitude of the globe, the confirmed daily cases, recoveries, and deaths are cl...
Main Authors: | Asif Afzal, Zahid Ansari, Saad Alshahrani, Arun K. Raj, Mohamed Saheer Kuruniyan, C. Ahamed Saleel, Kottakkaran Sooppy Nisar |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-10-01
|
Series: | Results in Physics |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2211379721007300 |
Similar Items
-
Bilateral Weighted Fuzzy C-Means Clustering
by: A. H. Hadjahmadi, et al.
Published: (2012-06-01) -
Perbandingan Algoritma K-Means dengan Fuzzy C-Means Untuk Clustering Tingkat Kedisiplinan Kinerja Karyawan
by: Nova Agustina, et al.
Published: (2018-12-01) -
Turbid of Water By Using Fuzzy C- Means and Hard K- Means
by: Rand Muhaned Fawzi, et al.
Published: (2020-09-01) -
Fuzzy Clustering Using C-Means Method
by: Georgi Krastev, et al.
Published: (2015-05-01) -
PERBANDINGAN PENGKLUSTERAN DATA IRIS MENGGUNAKAN METODE K-MEANS DAN FUZZY C-MEANS
by: Fitria Febrianti, et al.
Published: (2016-10-01)