Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B
Thomas Scior1, Hans-Georg Mack2, José Antonio Guevara García3, Wolfhard Koch41Departamento de Farmacia. Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Colonia San Manuel, Puebla, Mexico; 2Institut f...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Dove Medical Press
2008-11-01
|
Series: | Drug Design, Development and Therapy |
Online Access: | http://www.dovepress.com/antidiabetic-bis-maltolato-oxovanadiumiv-conversion-of-inactive-trans--a2591 |
id |
doaj-3f9c2007e9bf4d22821d64c15b75fb73 |
---|---|
record_format |
Article |
spelling |
doaj-3f9c2007e9bf4d22821d64c15b75fb732020-11-24T21:07:19ZengDove Medical PressDrug Design, Development and Therapy1177-88812008-11-012008default221231Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1BThomas SciorHans-Georg MackJosé Antonio Guevara GarcíaWolfhard KochThomas Scior1, Hans-Georg Mack2, José Antonio Guevara García3, Wolfhard Koch41Departamento de Farmacia. Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Colonia San Manuel, Puebla, Mexico; 2Institut für Physikalische Chemie, Universität Tübingen, Tübingen, Germany; 3Laboratorio de Investigación en Bioinorgánica y Biorremediación (LIByB). Departamento de Ciencias Básicas, Ingeniería y Tecnología, Universidad Autónoma de Tlaxcala, Apizaco, Tlaxcala, Mexico; 4Facultad de Estudios Superiores Zaragoza (FESZ), Universidad Nacional Autónoma de México (UNAM), Colonia Ejército de Oriente, Delegación Iztapalapa, Mexico City, MexicoAbstract: The postulated transition of Bis-Maltolato-OxoVanadium(IV) (BMOV) from its inactive trans- into its cis-aquo-BMOV isomeric form in solution was simulated by means of computational molecular modeling. The rotational barrier was calculated with DFT – B3LYP under a stepwise optimization protocol with STO-3G, 3-21G, 3-21G*, and 6-31G ab initio basis sets. Our computed results are consistent with reports on the putative molecular mechanism of BMOV triggering the insulin-like cellular response (insulin mimetic) as a potent inhibitor of the protein tyrosine phosphatase-1B (PTP-1B). Initially, trans-BMOV is present in its solid dosage form but in aqueous solution, and during oral administration, it is readily converted into a mixture of “open-type” and “closed-type” complexes of cis-aquo-BMOV under equilibrium conditions. However, in the same measure as the “closed-type” complex binds to the cytosolic PTP-1B, it disappears from solution, and the equilibrium shifts towards the “closed-type” species. In full accordance, the computed binding mode of cis-BMOV is energetically favored over sterically hindered trans-BMOV. In view of our earlier report on prodrug hypothesis of vanadium organic compounds the present results suggest that cis-BMOV is the bioactive species.Keywords: vanadium compounds, diabetes mellitus, molecular modeling, computational quantum chemistry, PTP-1B http://www.dovepress.com/antidiabetic-bis-maltolato-oxovanadiumiv-conversion-of-inactive-trans--a2591 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Thomas Scior Hans-Georg Mack José Antonio Guevara García Wolfhard Koch |
spellingShingle |
Thomas Scior Hans-Georg Mack José Antonio Guevara García Wolfhard Koch Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B Drug Design, Development and Therapy |
author_facet |
Thomas Scior Hans-Georg Mack José Antonio Guevara García Wolfhard Koch |
author_sort |
Thomas Scior |
title |
Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B |
title_short |
Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B |
title_full |
Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B |
title_fullStr |
Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B |
title_full_unstemmed |
Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B |
title_sort |
antidiabetic bis-maltolato-oxovanadium(iv): conversion of inactive trans- to bioactive cis-bmov for possible binding to target ptp-1b |
publisher |
Dove Medical Press |
series |
Drug Design, Development and Therapy |
issn |
1177-8881 |
publishDate |
2008-11-01 |
description |
Thomas Scior1, Hans-Georg Mack2, José Antonio Guevara García3, Wolfhard Koch41Departamento de Farmacia. Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Colonia San Manuel, Puebla, Mexico; 2Institut für Physikalische Chemie, Universität Tübingen, Tübingen, Germany; 3Laboratorio de Investigación en Bioinorgánica y Biorremediación (LIByB). Departamento de Ciencias Básicas, Ingeniería y Tecnología, Universidad Autónoma de Tlaxcala, Apizaco, Tlaxcala, Mexico; 4Facultad de Estudios Superiores Zaragoza (FESZ), Universidad Nacional Autónoma de México (UNAM), Colonia Ejército de Oriente, Delegación Iztapalapa, Mexico City, MexicoAbstract: The postulated transition of Bis-Maltolato-OxoVanadium(IV) (BMOV) from its inactive trans- into its cis-aquo-BMOV isomeric form in solution was simulated by means of computational molecular modeling. The rotational barrier was calculated with DFT – B3LYP under a stepwise optimization protocol with STO-3G, 3-21G, 3-21G*, and 6-31G ab initio basis sets. Our computed results are consistent with reports on the putative molecular mechanism of BMOV triggering the insulin-like cellular response (insulin mimetic) as a potent inhibitor of the protein tyrosine phosphatase-1B (PTP-1B). Initially, trans-BMOV is present in its solid dosage form but in aqueous solution, and during oral administration, it is readily converted into a mixture of “open-type” and “closed-type” complexes of cis-aquo-BMOV under equilibrium conditions. However, in the same measure as the “closed-type” complex binds to the cytosolic PTP-1B, it disappears from solution, and the equilibrium shifts towards the “closed-type” species. In full accordance, the computed binding mode of cis-BMOV is energetically favored over sterically hindered trans-BMOV. In view of our earlier report on prodrug hypothesis of vanadium organic compounds the present results suggest that cis-BMOV is the bioactive species.Keywords: vanadium compounds, diabetes mellitus, molecular modeling, computational quantum chemistry, PTP-1B |
url |
http://www.dovepress.com/antidiabetic-bis-maltolato-oxovanadiumiv-conversion-of-inactive-trans--a2591 |
work_keys_str_mv |
AT thomasscior antidiabeticbismaltolatooxovanadiumivconversionofinactivetranstobioactivecisbmovforpossiblebindingtotargetptp1b AT hansgeorgmack antidiabeticbismaltolatooxovanadiumivconversionofinactivetranstobioactivecisbmovforpossiblebindingtotargetptp1b AT josampeacuteantonioguevaragarcampiacutea antidiabeticbismaltolatooxovanadiumivconversionofinactivetranstobioactivecisbmovforpossiblebindingtotargetptp1b AT wolfhardkoch antidiabeticbismaltolatooxovanadiumivconversionofinactivetranstobioactivecisbmovforpossiblebindingtotargetptp1b |
_version_ |
1716763356166094848 |