Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B

Thomas Scior1, Hans-Georg Mack2, José Antonio Guevara García3, Wolfhard Koch41Departamento de Farmacia. Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Colonia San Manuel, Puebla, Mexico; 2Institut f...

Full description

Bibliographic Details
Main Authors: Thomas Scior, Hans-Georg Mack, José Antonio Guevara García, Wolfhard Koch
Format: Article
Language:English
Published: Dove Medical Press 2008-11-01
Series:Drug Design, Development and Therapy
Online Access:http://www.dovepress.com/antidiabetic-bis-maltolato-oxovanadiumiv-conversion-of-inactive-trans--a2591
id doaj-3f9c2007e9bf4d22821d64c15b75fb73
record_format Article
spelling doaj-3f9c2007e9bf4d22821d64c15b75fb732020-11-24T21:07:19ZengDove Medical PressDrug Design, Development and Therapy1177-88812008-11-012008default221231Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1BThomas SciorHans-Georg MackJosé Antonio Guevara GarcíaWolfhard KochThomas Scior1, Hans-Georg Mack2, José Antonio Guevara García3, Wolfhard Koch41Departamento de Farmacia. Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Colonia San Manuel, Puebla, Mexico; 2Institut für Physikalische Chemie, Universität Tübingen, Tübingen, Germany; 3Laboratorio de Investigación en Bioinorgánica y Biorremediación (LIByB). Departamento de Ciencias Básicas, Ingeniería y Tecnología, Universidad Autónoma de Tlaxcala, Apizaco, Tlaxcala, Mexico; 4Facultad de Estudios Superiores Zaragoza (FESZ), Universidad Nacional Autónoma de México (UNAM), Colonia Ejército de Oriente, Delegación Iztapalapa, Mexico City, MexicoAbstract: The postulated transition of Bis-Maltolato-OxoVanadium(IV) (BMOV) from its inactive trans- into its cis-aquo-BMOV isomeric form in solution was simulated by means of computational molecular modeling. The rotational barrier was calculated with DFT – B3LYP under a stepwise optimization protocol with STO-3G, 3-21G, 3-21G*, and 6-31G ab initio basis sets. Our computed results are consistent with reports on the putative molecular mechanism of BMOV triggering the insulin-like cellular response (insulin mimetic) as a potent inhibitor of the protein tyrosine phosphatase-1B (PTP-1B). Initially, trans-BMOV is present in its solid dosage form but in aqueous solution, and during oral administration, it is readily converted into a mixture of “open-type” and “closed-type” complexes of cis-aquo-BMOV under equilibrium conditions. However, in the same measure as the “closed-type” complex binds to the cytosolic PTP-1B, it disappears from solution, and the equilibrium shifts towards the “closed-type” species. In full accordance, the computed binding mode of cis-BMOV is energetically favored over sterically hindered trans-BMOV. In view of our earlier report on prodrug hypothesis of vanadium organic compounds the present results suggest that cis-BMOV is the bioactive species.Keywords: vanadium compounds, diabetes mellitus, molecular modeling, computational quantum chemistry, PTP-1B http://www.dovepress.com/antidiabetic-bis-maltolato-oxovanadiumiv-conversion-of-inactive-trans--a2591
collection DOAJ
language English
format Article
sources DOAJ
author Thomas Scior
Hans-Georg Mack
José Antonio Guevara García
Wolfhard Koch
spellingShingle Thomas Scior
Hans-Georg Mack
José Antonio Guevara García
Wolfhard Koch
Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B
Drug Design, Development and Therapy
author_facet Thomas Scior
Hans-Georg Mack
José Antonio Guevara García
Wolfhard Koch
author_sort Thomas Scior
title Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B
title_short Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B
title_full Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B
title_fullStr Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B
title_full_unstemmed Antidiabetic Bis-Maltolato-OxoVanadium(IV): Conversion of inactive trans- to bioactive cis-BMOV for possible binding to target PTP-1B
title_sort antidiabetic bis-maltolato-oxovanadium(iv): conversion of inactive trans- to bioactive cis-bmov for possible binding to target ptp-1b
publisher Dove Medical Press
series Drug Design, Development and Therapy
issn 1177-8881
publishDate 2008-11-01
description Thomas Scior1, Hans-Georg Mack2, José Antonio Guevara García3, Wolfhard Koch41Departamento de Farmacia. Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Colonia San Manuel, Puebla, Mexico; 2Institut für Physikalische Chemie, Universität Tübingen, Tübingen, Germany; 3Laboratorio de Investigación en Bioinorgánica y Biorremediación (LIByB). Departamento de Ciencias Básicas, Ingeniería y Tecnología, Universidad Autónoma de Tlaxcala, Apizaco, Tlaxcala, Mexico; 4Facultad de Estudios Superiores Zaragoza (FESZ), Universidad Nacional Autónoma de México (UNAM), Colonia Ejército de Oriente, Delegación Iztapalapa, Mexico City, MexicoAbstract: The postulated transition of Bis-Maltolato-OxoVanadium(IV) (BMOV) from its inactive trans- into its cis-aquo-BMOV isomeric form in solution was simulated by means of computational molecular modeling. The rotational barrier was calculated with DFT – B3LYP under a stepwise optimization protocol with STO-3G, 3-21G, 3-21G*, and 6-31G ab initio basis sets. Our computed results are consistent with reports on the putative molecular mechanism of BMOV triggering the insulin-like cellular response (insulin mimetic) as a potent inhibitor of the protein tyrosine phosphatase-1B (PTP-1B). Initially, trans-BMOV is present in its solid dosage form but in aqueous solution, and during oral administration, it is readily converted into a mixture of “open-type” and “closed-type” complexes of cis-aquo-BMOV under equilibrium conditions. However, in the same measure as the “closed-type” complex binds to the cytosolic PTP-1B, it disappears from solution, and the equilibrium shifts towards the “closed-type” species. In full accordance, the computed binding mode of cis-BMOV is energetically favored over sterically hindered trans-BMOV. In view of our earlier report on prodrug hypothesis of vanadium organic compounds the present results suggest that cis-BMOV is the bioactive species.Keywords: vanadium compounds, diabetes mellitus, molecular modeling, computational quantum chemistry, PTP-1B
url http://www.dovepress.com/antidiabetic-bis-maltolato-oxovanadiumiv-conversion-of-inactive-trans--a2591
work_keys_str_mv AT thomasscior antidiabeticbismaltolatooxovanadiumivconversionofinactivetranstobioactivecisbmovforpossiblebindingtotargetptp1b
AT hansgeorgmack antidiabeticbismaltolatooxovanadiumivconversionofinactivetranstobioactivecisbmovforpossiblebindingtotargetptp1b
AT josampeacuteantonioguevaragarcampiacutea antidiabeticbismaltolatooxovanadiumivconversionofinactivetranstobioactivecisbmovforpossiblebindingtotargetptp1b
AT wolfhardkoch antidiabeticbismaltolatooxovanadiumivconversionofinactivetranstobioactivecisbmovforpossiblebindingtotargetptp1b
_version_ 1716763356166094848