Optimization of Deep Architectures for EEG Signal Classification: An AutoML Approach Using Evolutionary Algorithms
Electroencephalography (EEG) signal classification is a challenging task due to the low signal-to-noise ratio and the usual presence of artifacts from different sources. Different classification techniques, which are usually based on a predefined set of features extracted from the EEG band power dis...
Main Authors: | Diego Aquino-Brítez, Andrés Ortiz, Julio Ortega, Javier León, Marco Formoso, John Gan, Juan J. Escobar |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-03-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/21/6/2096 |
Similar Items
-
On the Feasibility of Using an Ear-EEG to Develop an Endogenous Brain-Computer Interface
by: Soo-In Choi, et al.
Published: (2018-08-01) -
Interfejs mózg-komputer wykorzystujący sygnały EEG
by: Leszek Marek, et al.
Published: (2016-12-01) -
Non-Invasive BCI through EEG
by: Szafir, Daniel J.
Published: (2010) -
Fully Open-Access Passive Dry Electrodes BIOADC: Open-Electroencephalography (EEG) Re-Invented
by: Gaetano D. Gargiulo, et al.
Published: (2019-02-01) -
Commande robuste d'un effecteur par une interface cerveau machine EEG asynchrone
by: Barachant, Alexandre
Published: (2012)