Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles
The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation i...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2015-07-01
|
Series: | AIP Advances |
Online Access: | http://dx.doi.org/10.1063/1.4927548 |
Summary: | The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties. |
---|---|
ISSN: | 2158-3226 |