Calcium binding by monosulfate esters of taurochenodeoxycholate

The effect of sulfate esterification of the 3 alpha- or 7 alpha-hydroxyl groups of taurochenodeoxycholate on calcium binding was studied at 0.154 M NaCl in the presence and absence of phosphatidylcholine using a calcium electrode. For comparison, similar studies were made with taurochenodeoxycholate...

Full description

Bibliographic Details
Main Authors: RD Stevens, L Lack, PG Killenberg
Format: Article
Language:English
Published: Elsevier 1991-04-01
Series:Journal of Lipid Research
Online Access:http://www.sciencedirect.com/science/article/pii/S0022227520420498
Description
Summary:The effect of sulfate esterification of the 3 alpha- or 7 alpha-hydroxyl groups of taurochenodeoxycholate on calcium binding was studied at 0.154 M NaCl in the presence and absence of phosphatidylcholine using a calcium electrode. For comparison, similar studies were made with taurochenodeoxycholate, taurodeoxycholate, and taurocholate. No high affinity calcium binding was demonstrable for any of these bile salts in pre-micellar solutions. Taurine-conjugated bile salts have greater affinity for calcium when in a micellar form. At elevated bile salt concentrations, the calcium binding of unsulfated dihydroxy taurine conjugates was similar to that of the monosulfate esters of taurochenodeoxycholate. The presence of phosphatidylcholine decreased calcium binding of the unsulfated dihydroxy bile salts and slightly increased calcium binding by taurocholate. However, the addition of phosphatidylcholine to monosulfate esters of taurochenodeoxycholate results in large increments in calcium binding. The results indicate that increased calcium binding due to the presence of phosphatidylcholine in bile salt solutions depends, in part, on the hydrophilicity of the bile salt and that the interaction of monosulfate esters of taurochenodeoxycholate with phosphatidylcholine leads to the formation of a high affinity calcium binding site.
ISSN:0022-2275