Experimental and numerical investigation of Weibullian behavior of grain crushing strength
The Weibullian behavior of single grain crushing strength was investigated experimentally and numerically with the aim of enhancing the understanding of rock grain breakage. The morphologies of pebble grains were obtained using white light 3D laser scanning and image processing. A grain shape librar...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-03-01
|
Series: | Geoscience Frontiers |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1674987119301355 |
id |
doaj-3f5cd9ed46564f8cafa1a1c0ed2973d9 |
---|---|
record_format |
Article |
spelling |
doaj-3f5cd9ed46564f8cafa1a1c0ed2973d92020-11-25T02:52:10ZengElsevierGeoscience Frontiers1674-98712020-03-01112401411Experimental and numerical investigation of Weibullian behavior of grain crushing strengthQuanshui Huang0Wei Zhou1Gang Ma2Tang-Tat Ng3Kun Xu4State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering, Wuhan University, Ministry of Education, Wuhan 430072, ChinaState Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering, Wuhan University, Ministry of Education, Wuhan 430072, ChinaState Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering, Wuhan University, Ministry of Education, Wuhan 430072, China; Corresponding author. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.University of New Mexico, Albuquerque, NM, 87131, USAState Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering, Wuhan University, Ministry of Education, Wuhan 430072, ChinaThe Weibullian behavior of single grain crushing strength was investigated experimentally and numerically with the aim of enhancing the understanding of rock grain breakage. The morphologies of pebble grains were obtained using white light 3D laser scanning and image processing. A grain shape library was constructed for grain shape analysis with different shape descriptors. The use of the shape library and grain stability analysis is discussed for a suggested procedure to rotate a grain to its most stable configuration. Single grain crushing tests were performed for 30 pebbles to obtain force-displacement curves and fracture patterns. Each grain was compressed diametrically between flat platens. As expected, the values of the stress at bulk fracture follow a Weibull distribution. A procedure for generating crushable agglomerates with realistic particle shapes was demonstrated, which was accomplished in the discrete element modeling (DEM) of the single grain crushing test. The work presented here is novel in that both the heterogeneous micro-structures and randomly distributed flaws are considered. The DEM results demonstrate that the proposed modeling approach and calibrated parameters are reliable and can reflect the crushing behavior of rock pebbles. Finally, three parametric studies were presented evaluating the effects of micro-crack density, micro-crack disorder, and grain morphology on the Weibullian behavior of the crushing strength, none of which has previously been thoroughly considered. These three studies provide a deeper insight into the origin of the Weibullian behavior of single grain crushing strength. Keywords: Rock grain, Grain crushing test, Discrete element modeling, 3D scanning technique, Grain stability, Weibullian behaviorhttp://www.sciencedirect.com/science/article/pii/S1674987119301355 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Quanshui Huang Wei Zhou Gang Ma Tang-Tat Ng Kun Xu |
spellingShingle |
Quanshui Huang Wei Zhou Gang Ma Tang-Tat Ng Kun Xu Experimental and numerical investigation of Weibullian behavior of grain crushing strength Geoscience Frontiers |
author_facet |
Quanshui Huang Wei Zhou Gang Ma Tang-Tat Ng Kun Xu |
author_sort |
Quanshui Huang |
title |
Experimental and numerical investigation of Weibullian behavior of grain crushing strength |
title_short |
Experimental and numerical investigation of Weibullian behavior of grain crushing strength |
title_full |
Experimental and numerical investigation of Weibullian behavior of grain crushing strength |
title_fullStr |
Experimental and numerical investigation of Weibullian behavior of grain crushing strength |
title_full_unstemmed |
Experimental and numerical investigation of Weibullian behavior of grain crushing strength |
title_sort |
experimental and numerical investigation of weibullian behavior of grain crushing strength |
publisher |
Elsevier |
series |
Geoscience Frontiers |
issn |
1674-9871 |
publishDate |
2020-03-01 |
description |
The Weibullian behavior of single grain crushing strength was investigated experimentally and numerically with the aim of enhancing the understanding of rock grain breakage. The morphologies of pebble grains were obtained using white light 3D laser scanning and image processing. A grain shape library was constructed for grain shape analysis with different shape descriptors. The use of the shape library and grain stability analysis is discussed for a suggested procedure to rotate a grain to its most stable configuration. Single grain crushing tests were performed for 30 pebbles to obtain force-displacement curves and fracture patterns. Each grain was compressed diametrically between flat platens. As expected, the values of the stress at bulk fracture follow a Weibull distribution. A procedure for generating crushable agglomerates with realistic particle shapes was demonstrated, which was accomplished in the discrete element modeling (DEM) of the single grain crushing test. The work presented here is novel in that both the heterogeneous micro-structures and randomly distributed flaws are considered. The DEM results demonstrate that the proposed modeling approach and calibrated parameters are reliable and can reflect the crushing behavior of rock pebbles. Finally, three parametric studies were presented evaluating the effects of micro-crack density, micro-crack disorder, and grain morphology on the Weibullian behavior of the crushing strength, none of which has previously been thoroughly considered. These three studies provide a deeper insight into the origin of the Weibullian behavior of single grain crushing strength. Keywords: Rock grain, Grain crushing test, Discrete element modeling, 3D scanning technique, Grain stability, Weibullian behavior |
url |
http://www.sciencedirect.com/science/article/pii/S1674987119301355 |
work_keys_str_mv |
AT quanshuihuang experimentalandnumericalinvestigationofweibullianbehaviorofgraincrushingstrength AT weizhou experimentalandnumericalinvestigationofweibullianbehaviorofgraincrushingstrength AT gangma experimentalandnumericalinvestigationofweibullianbehaviorofgraincrushingstrength AT tangtatng experimentalandnumericalinvestigationofweibullianbehaviorofgraincrushingstrength AT kunxu experimentalandnumericalinvestigationofweibullianbehaviorofgraincrushingstrength |
_version_ |
1724730809198313472 |