Tilings in topological spaces

A tiling of a topological space X is a covering of X by sets (called tiles) which are the closures of their pairwise-disjoint interiors. Tilings of ℝ2 have received considerable attention (see [2] for a wealth of interesting examples and results as well as an extensive bibliography). On the other ha...

Full description

Bibliographic Details
Main Author: F. G. Arenas
Format: Article
Language:English
Published: Hindawi Limited 1999-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171299226117
Description
Summary:A tiling of a topological space X is a covering of X by sets (called tiles) which are the closures of their pairwise-disjoint interiors. Tilings of ℝ2 have received considerable attention (see [2] for a wealth of interesting examples and results as well as an extensive bibliography). On the other hand, the study of tilings of general topological spaces is just beginning (see [1, 3, 4, 6]). We give some generalizations for topological spaces of some results known for certain classes of tilings of topological vector spaces.
ISSN:0161-1712
1687-0425