Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China

<p>To grasp the key factors affecting particle mass scattering efficiency (MSE), particle mass and number size distribution, PM<span class="inline-formula"><sub>2.5</sub></span> and PM<span class="inline-formula"><sub>10</sub></s...

Full description

Bibliographic Details
Main Authors: J. Tao, Z. Zhang, Y. Wu, L. Zhang, Z. Wu, P. Cheng, M. Li, L. Chen, R. Zhang, J. Cao
Format: Article
Language:English
Published: Copernicus Publications 2019-07-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/8471/2019/acp-19-8471-2019.pdf
id doaj-3f1d8a9fb69243ef9d7ad70080b74851
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author J. Tao
Z. Zhang
Y. Wu
L. Zhang
Z. Wu
P. Cheng
M. Li
L. Chen
R. Zhang
J. Cao
spellingShingle J. Tao
Z. Zhang
Y. Wu
L. Zhang
Z. Wu
P. Cheng
M. Li
L. Chen
R. Zhang
J. Cao
Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China
Atmospheric Chemistry and Physics
author_facet J. Tao
Z. Zhang
Y. Wu
L. Zhang
Z. Wu
P. Cheng
M. Li
L. Chen
R. Zhang
J. Cao
author_sort J. Tao
title Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China
title_short Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China
title_full Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China
title_fullStr Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China
title_full_unstemmed Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China
title_sort impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban guangzhou in southern china
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2019-07-01
description <p>To grasp the key factors affecting particle mass scattering efficiency (MSE), particle mass and number size distribution, PM<span class="inline-formula"><sub>2.5</sub></span> and PM<span class="inline-formula"><sub>10</sub></span> and their major chemical compositions, and the particle scattering coefficient (<span class="inline-formula"><i>b</i><sub>sp</sub></span>) under dry conditions were measured at an urban site in Guangzhou, southern China, during 2015–2016. On an annual average, <span class="inline-formula">10±2</span>&thinsp;%, <span class="inline-formula">48±7</span>&thinsp;% and <span class="inline-formula">42±8</span>&thinsp;% of PM<span class="inline-formula"><sub>10</sub></span> mass were in the condensation, droplet and coarse modes, respectively, with mass mean aerodynamic diameters (MMADs) of <span class="inline-formula">0.78±0.07</span> in the droplet mode and <span class="inline-formula">4.57±0.42</span>&thinsp;<span class="inline-formula">µm</span> in the coarse mode. The identified chemical species mass concentrations can explain <span class="inline-formula">79±3</span>&thinsp;%, <span class="inline-formula">82±6</span>&thinsp;% and <span class="inline-formula">57±6</span>&thinsp;% of the total particle mass in the condensation, droplet and coarse mode, respectively. Organic matter (OM) and elemental carbon (EC) in the condensation mode, OM, <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">NH<sub>4</sub>NO<sub>3</sub></span>, and crustal element oxides in the droplet mode, and crustal element oxides, OM, and <span class="inline-formula">CaSO<sub>4</sub></span> in the coarse mode, were the dominant chemical species in their respective modes. The measured <span class="inline-formula"><i>b</i><sub>sp</sub></span> can be reconstructed to the level of <span class="inline-formula">91±10</span>&thinsp;% using Mie theory with input of the estimated chemically resolved number concentrations of NaCl, <span class="inline-formula">NaNO<sub>3</sub></span>, <span class="inline-formula">Na<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">NH<sub>4</sub>NO<sub>3</sub></span>, <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">K<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">CaSO<sub>4</sub></span>, <span class="inline-formula">Ca(NO<sub>3</sub>)<sub>2</sub></span>, OM, EC, crustal element oxides and unidentified fraction. MSEs of particle and individual chemical species were underestimated by less than 13&thinsp;% in any season based on the estimated <span class="inline-formula"><i>b</i><sub>sp</sub></span> and chemical species mass concentrations. Seasonal average MSEs varied in the range of <span class="inline-formula">3.5±0.1</span> to <span class="inline-formula">3.9±0.2</span>&thinsp;m<span class="inline-formula"><sup>2</sup></span>&thinsp;g<span class="inline-formula"><sup>−1</sup></span> for fine particles (aerodynamic diameter smaller than 2.1&thinsp;<span class="inline-formula">µm</span>), which was mainly caused by seasonal variations in the mass fractions and MSEs of the dominant chemical species (OM, <span class="inline-formula">NH<sub>4</sub>NO<sub>3</sub></span>, <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>) in the droplet mode. MSEs of the dominant chemical species were determined by their lognormal size-distribution parameters, including MMADs and standard deviation (<span class="inline-formula"><i>σ</i></span>) in the droplet mode.</p>
url https://www.atmos-chem-phys.net/19/8471/2019/acp-19-8471-2019.pdf
work_keys_str_mv AT jtao impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina
AT zzhang impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina
AT ywu impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina
AT lzhang impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina
AT zwu impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina
AT pcheng impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina
AT mli impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina
AT lchen impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina
AT rzhang impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina
AT jcao impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina
_version_ 1725349253609422848
spelling doaj-3f1d8a9fb69243ef9d7ad70080b748512020-11-25T00:25:23ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-07-01198471849010.5194/acp-19-8471-2019Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern ChinaJ. Tao0Z. Zhang1Y. Wu2L. Zhang3Z. Wu4P. Cheng5M. Li6L. Chen7R. Zhang8J. Cao9South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, ChinaSouth China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, ChinaRCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, ChinaAir Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, CanadaState Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, ChinaInstitute of Mass Spectrometer and Atmos. Environ., Jinan University, Guangzhou, ChinaInstitute of Mass Spectrometer and Atmos. Environ., Jinan University, Guangzhou, ChinaSouth China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, ChinaRCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, ChinaKey Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China<p>To grasp the key factors affecting particle mass scattering efficiency (MSE), particle mass and number size distribution, PM<span class="inline-formula"><sub>2.5</sub></span> and PM<span class="inline-formula"><sub>10</sub></span> and their major chemical compositions, and the particle scattering coefficient (<span class="inline-formula"><i>b</i><sub>sp</sub></span>) under dry conditions were measured at an urban site in Guangzhou, southern China, during 2015–2016. On an annual average, <span class="inline-formula">10±2</span>&thinsp;%, <span class="inline-formula">48±7</span>&thinsp;% and <span class="inline-formula">42±8</span>&thinsp;% of PM<span class="inline-formula"><sub>10</sub></span> mass were in the condensation, droplet and coarse modes, respectively, with mass mean aerodynamic diameters (MMADs) of <span class="inline-formula">0.78±0.07</span> in the droplet mode and <span class="inline-formula">4.57±0.42</span>&thinsp;<span class="inline-formula">µm</span> in the coarse mode. The identified chemical species mass concentrations can explain <span class="inline-formula">79±3</span>&thinsp;%, <span class="inline-formula">82±6</span>&thinsp;% and <span class="inline-formula">57±6</span>&thinsp;% of the total particle mass in the condensation, droplet and coarse mode, respectively. Organic matter (OM) and elemental carbon (EC) in the condensation mode, OM, <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">NH<sub>4</sub>NO<sub>3</sub></span>, and crustal element oxides in the droplet mode, and crustal element oxides, OM, and <span class="inline-formula">CaSO<sub>4</sub></span> in the coarse mode, were the dominant chemical species in their respective modes. The measured <span class="inline-formula"><i>b</i><sub>sp</sub></span> can be reconstructed to the level of <span class="inline-formula">91±10</span>&thinsp;% using Mie theory with input of the estimated chemically resolved number concentrations of NaCl, <span class="inline-formula">NaNO<sub>3</sub></span>, <span class="inline-formula">Na<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">NH<sub>4</sub>NO<sub>3</sub></span>, <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">K<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">CaSO<sub>4</sub></span>, <span class="inline-formula">Ca(NO<sub>3</sub>)<sub>2</sub></span>, OM, EC, crustal element oxides and unidentified fraction. MSEs of particle and individual chemical species were underestimated by less than 13&thinsp;% in any season based on the estimated <span class="inline-formula"><i>b</i><sub>sp</sub></span> and chemical species mass concentrations. Seasonal average MSEs varied in the range of <span class="inline-formula">3.5±0.1</span> to <span class="inline-formula">3.9±0.2</span>&thinsp;m<span class="inline-formula"><sup>2</sup></span>&thinsp;g<span class="inline-formula"><sup>−1</sup></span> for fine particles (aerodynamic diameter smaller than 2.1&thinsp;<span class="inline-formula">µm</span>), which was mainly caused by seasonal variations in the mass fractions and MSEs of the dominant chemical species (OM, <span class="inline-formula">NH<sub>4</sub>NO<sub>3</sub></span>, <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>) in the droplet mode. MSEs of the dominant chemical species were determined by their lognormal size-distribution parameters, including MMADs and standard deviation (<span class="inline-formula"><i>σ</i></span>) in the droplet mode.</p>https://www.atmos-chem-phys.net/19/8471/2019/acp-19-8471-2019.pdf