Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China
<p>To grasp the key factors affecting particle mass scattering efficiency (MSE), particle mass and number size distribution, PM<span class="inline-formula"><sub>2.5</sub></span> and PM<span class="inline-formula"><sub>10</sub></s...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-07-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/19/8471/2019/acp-19-8471-2019.pdf |
id |
doaj-3f1d8a9fb69243ef9d7ad70080b74851 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
J. Tao Z. Zhang Y. Wu L. Zhang Z. Wu P. Cheng M. Li L. Chen R. Zhang J. Cao |
spellingShingle |
J. Tao Z. Zhang Y. Wu L. Zhang Z. Wu P. Cheng M. Li L. Chen R. Zhang J. Cao Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China Atmospheric Chemistry and Physics |
author_facet |
J. Tao Z. Zhang Y. Wu L. Zhang Z. Wu P. Cheng M. Li L. Chen R. Zhang J. Cao |
author_sort |
J. Tao |
title |
Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China |
title_short |
Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China |
title_full |
Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China |
title_fullStr |
Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China |
title_full_unstemmed |
Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern China |
title_sort |
impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban guangzhou in southern china |
publisher |
Copernicus Publications |
series |
Atmospheric Chemistry and Physics |
issn |
1680-7316 1680-7324 |
publishDate |
2019-07-01 |
description |
<p>To grasp the key factors affecting particle mass
scattering efficiency (MSE), particle mass and number size distribution,
PM<span class="inline-formula"><sub>2.5</sub></span> and PM<span class="inline-formula"><sub>10</sub></span> and their major chemical compositions, and the particle
scattering coefficient (<span class="inline-formula"><i>b</i><sub>sp</sub></span>) under dry conditions were measured at an
urban site in Guangzhou, southern China, during 2015–2016. On an annual average,
<span class="inline-formula">10±2</span> %, <span class="inline-formula">48±7</span> % and <span class="inline-formula">42±8</span> % of PM<span class="inline-formula"><sub>10</sub></span> mass were
in the condensation, droplet and coarse modes, respectively, with mass mean
aerodynamic diameters (MMADs) of <span class="inline-formula">0.78±0.07</span> in the droplet mode and
<span class="inline-formula">4.57±0.42</span> <span class="inline-formula">µm</span> in the coarse mode. The identified chemical
species mass concentrations can explain <span class="inline-formula">79±3</span> %, <span class="inline-formula">82±6</span> % and <span class="inline-formula">57±6</span> % of the total particle mass in the condensation, droplet and coarse mode, respectively. Organic matter (OM) and elemental carbon (EC) in the condensation mode, OM, <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">NH<sub>4</sub>NO<sub>3</sub></span>, and crustal element oxides in the droplet mode, and crustal element oxides, OM, and <span class="inline-formula">CaSO<sub>4</sub></span> in the coarse mode, were the dominant chemical species in their respective modes. The measured <span class="inline-formula"><i>b</i><sub>sp</sub></span> can be reconstructed to the
level of <span class="inline-formula">91±10</span> % using Mie theory with input of the estimated
chemically resolved number concentrations of NaCl, <span class="inline-formula">NaNO<sub>3</sub></span>,
<span class="inline-formula">Na<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">NH<sub>4</sub>NO<sub>3</sub></span>, <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>,
<span class="inline-formula">K<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">CaSO<sub>4</sub></span>, <span class="inline-formula">Ca(NO<sub>3</sub>)<sub>2</sub></span>, OM, EC, crustal element
oxides and unidentified fraction. MSEs of particle and individual chemical
species were underestimated by less than 13 % in any season based on the estimated <span class="inline-formula"><i>b</i><sub>sp</sub></span> and chemical species mass concentrations. Seasonal
average MSEs varied in the range of <span class="inline-formula">3.5±0.1</span> to <span class="inline-formula">3.9±0.2</span> m<span class="inline-formula"><sup>2</sup></span> g<span class="inline-formula"><sup>−1</sup></span> for fine particles (aerodynamic diameter smaller than 2.1 <span class="inline-formula">µm</span>),
which was mainly caused by seasonal variations in the mass fractions and
MSEs of the dominant chemical species (OM, <span class="inline-formula">NH<sub>4</sub>NO<sub>3</sub></span>,
<span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>) in the droplet mode. MSEs of the dominant chemical
species were determined by their lognormal size-distribution parameters,
including MMADs and standard deviation (<span class="inline-formula"><i>σ</i></span>) in the droplet mode.</p> |
url |
https://www.atmos-chem-phys.net/19/8471/2019/acp-19-8471-2019.pdf |
work_keys_str_mv |
AT jtao impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina AT zzhang impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina AT ywu impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina AT lzhang impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina AT zwu impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina AT pcheng impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina AT mli impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina AT lchen impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina AT rzhang impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina AT jcao impactofparticlenumberandmasssizedistributionsofmajorchemicalcomponentsonparticlemassscatteringefficiencyinurbanguangzhouinsouthernchina |
_version_ |
1725349253609422848 |
spelling |
doaj-3f1d8a9fb69243ef9d7ad70080b748512020-11-25T00:25:23ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-07-01198471849010.5194/acp-19-8471-2019Impact of particle number and mass size distributions of major chemical components on particle mass scattering efficiency in urban Guangzhou in southern ChinaJ. Tao0Z. Zhang1Y. Wu2L. Zhang3Z. Wu4P. Cheng5M. Li6L. Chen7R. Zhang8J. Cao9South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, ChinaSouth China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, ChinaRCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, ChinaAir Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, CanadaState Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, ChinaInstitute of Mass Spectrometer and Atmos. Environ., Jinan University, Guangzhou, ChinaInstitute of Mass Spectrometer and Atmos. Environ., Jinan University, Guangzhou, ChinaSouth China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, ChinaRCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, ChinaKey Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China<p>To grasp the key factors affecting particle mass scattering efficiency (MSE), particle mass and number size distribution, PM<span class="inline-formula"><sub>2.5</sub></span> and PM<span class="inline-formula"><sub>10</sub></span> and their major chemical compositions, and the particle scattering coefficient (<span class="inline-formula"><i>b</i><sub>sp</sub></span>) under dry conditions were measured at an urban site in Guangzhou, southern China, during 2015–2016. On an annual average, <span class="inline-formula">10±2</span> %, <span class="inline-formula">48±7</span> % and <span class="inline-formula">42±8</span> % of PM<span class="inline-formula"><sub>10</sub></span> mass were in the condensation, droplet and coarse modes, respectively, with mass mean aerodynamic diameters (MMADs) of <span class="inline-formula">0.78±0.07</span> in the droplet mode and <span class="inline-formula">4.57±0.42</span> <span class="inline-formula">µm</span> in the coarse mode. The identified chemical species mass concentrations can explain <span class="inline-formula">79±3</span> %, <span class="inline-formula">82±6</span> % and <span class="inline-formula">57±6</span> % of the total particle mass in the condensation, droplet and coarse mode, respectively. Organic matter (OM) and elemental carbon (EC) in the condensation mode, OM, <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">NH<sub>4</sub>NO<sub>3</sub></span>, and crustal element oxides in the droplet mode, and crustal element oxides, OM, and <span class="inline-formula">CaSO<sub>4</sub></span> in the coarse mode, were the dominant chemical species in their respective modes. The measured <span class="inline-formula"><i>b</i><sub>sp</sub></span> can be reconstructed to the level of <span class="inline-formula">91±10</span> % using Mie theory with input of the estimated chemically resolved number concentrations of NaCl, <span class="inline-formula">NaNO<sub>3</sub></span>, <span class="inline-formula">Na<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">NH<sub>4</sub>NO<sub>3</sub></span>, <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">K<sub>2</sub>SO<sub>4</sub></span>, <span class="inline-formula">CaSO<sub>4</sub></span>, <span class="inline-formula">Ca(NO<sub>3</sub>)<sub>2</sub></span>, OM, EC, crustal element oxides and unidentified fraction. MSEs of particle and individual chemical species were underestimated by less than 13 % in any season based on the estimated <span class="inline-formula"><i>b</i><sub>sp</sub></span> and chemical species mass concentrations. Seasonal average MSEs varied in the range of <span class="inline-formula">3.5±0.1</span> to <span class="inline-formula">3.9±0.2</span> m<span class="inline-formula"><sup>2</sup></span> g<span class="inline-formula"><sup>−1</sup></span> for fine particles (aerodynamic diameter smaller than 2.1 <span class="inline-formula">µm</span>), which was mainly caused by seasonal variations in the mass fractions and MSEs of the dominant chemical species (OM, <span class="inline-formula">NH<sub>4</sub>NO<sub>3</sub></span>, <span class="inline-formula">(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub></span>) in the droplet mode. MSEs of the dominant chemical species were determined by their lognormal size-distribution parameters, including MMADs and standard deviation (<span class="inline-formula"><i>σ</i></span>) in the droplet mode.</p>https://www.atmos-chem-phys.net/19/8471/2019/acp-19-8471-2019.pdf |