Comparative performance analysis of hybrid differential evolution and pattern search technique for frequency control of the electric power system

Abstract In the current situation, operation and control of power system is a greater challenge. The most significant situation in power system control is load frequency control. In the present work, a hybrid differential evolution and pattern search (hDE-PS) method has been suggested for frequency...

Full description

Bibliographic Details
Main Authors: Pratap Chandra Pradhan, Rabindra Kumar Sahu, Sidhartha Panda
Format: Article
Language:English
Published: SpringerOpen 2021-04-01
Series:Journal of Electrical Systems and Information Technology
Subjects:
Online Access:https://doi.org/10.1186/s43067-021-00033-y
Description
Summary:Abstract In the current situation, operation and control of power system is a greater challenge. The most significant situation in power system control is load frequency control. In the present work, a hybrid differential evolution and pattern search (hDE-PS) method has been suggested for frequency regulation of electrical power systems. Fractional-order proportional integral derivative (FOPID) controller is implemented for design and analysis purpose. The suggested control method has been applied for two electrical power systems model, i.e., 2-area diverse source power system with/without HVDC linkage and 2-area thermal system. The performances of the suggested controller have been evaluated with PID and optimal controller. The simulation results indicate that system performances are enhanced with the suggested approach for identical structure. Robustness of the suggested approach has been analyzed by variation in random load and the system parameters. The suggested method (hDE-PS tuned FOPID) is further investigated with a 2-area thermal system. The performance of the recommended approach is analyzed by equating the results with other newly available approaches, like Genetic Algorithm (GA), Bacteria Foraging Optimization Algorithm (BFOA), Particle Swarm Optimization (PSO), hybrid BFOA and PSO (hBFOA-PSO), multi-objective Non-dominated Sorting Genetic Algorithm (NSGA)-II and Firefly Algorithm for the similar structure.
ISSN:2314-7172