Track Prediction for HF Radar Vessels Submerged in Strong Clutter Based on MSCNN Fusion with GRU-AM and AR Model

High-frequency (HF) surface-wave radar has a wide range of applications in marine monitoring due to its long-distance, wide-area, and all-weather detection ability. However, the accurate detection of HF radar vessels is severely restricted by strong clutter and interference, causing the echo of vess...

Full description

Bibliographic Details
Main Authors: Ling Zhang, Jingzhi Zhang, Jiong Niu, Q. M. Jonathan Wu, Gangsheng Li
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Remote Sensing
Subjects:
GRU
Online Access:https://www.mdpi.com/2072-4292/13/11/2164
id doaj-3f05ed0b4d3f430bbb432d235cccce80
record_format Article
spelling doaj-3f05ed0b4d3f430bbb432d235cccce802021-06-01T01:50:08ZengMDPI AGRemote Sensing2072-42922021-05-01132164216410.3390/rs13112164Track Prediction for HF Radar Vessels Submerged in Strong Clutter Based on MSCNN Fusion with GRU-AM and AR ModelLing Zhang0Jingzhi Zhang1Jiong Niu2Q. M. Jonathan Wu3Gangsheng Li4College of Engineering, Ocean University of China, Qingdao 266100, ChinaCollege of Engineering, Ocean University of China, Qingdao 266100, ChinaCollege of Engineering, Ocean University of China, Qingdao 266100, ChinaDepartment of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B3P4, CanadaDepartment of Education, Ocean University of China, Qingdao 266100, ChinaHigh-frequency (HF) surface-wave radar has a wide range of applications in marine monitoring due to its long-distance, wide-area, and all-weather detection ability. However, the accurate detection of HF radar vessels is severely restricted by strong clutter and interference, causing the echo of vessels completely submerged by clutter. As a result, the target cannot be detected and tracked for a period of time under the influence of strong clutter, which causes broken trajectories. To solve this problem, we propose an HF radar-vessel trajectory-prediction method based on a multi-scale convolutional neural network (MSCNN) that combines a gated recurrent unit and attention mechanism (GRU-AM) and a fusion with an autoregressive (AR) model. The vessel’s latitude and longitude information obtained by the HF radar is sent into the convolutional neural network (CNN) with different window lengths in parallel, and feature fusion is performed on the extracted multi-scale features. The deep GRU model is built to learn the time series with the GRU structure to preserve historical information. Different weights are given to the features using the temporal attention mechanism (AM), which helps the network learn the key information. The linear information on latitude and longitude at the current timestep is forecast by combining the AR model with the trajectory output from the AM to achieve a combination of linear and nonlinear prediction models. To make full use of the HF radar tracking information, the broken trajectory prediction is carried out by forward and backward computation using data from before and after the fracture, respectively. Weights are then assigned to the two predicted results by the entropy-value method to obtain the final ship trajectory by weighted summation. Field experiments show that the proposed method can accurately forecast the trajectories of vessels concealed in clutter. In comparison with other mainstream methods, the new method performs better in estimation accuracy for HF radar vessels concealed in clutter.https://www.mdpi.com/2072-4292/13/11/2164HF radartrack predictionmultiscale convolutionGRUattention mechanismautoregressive model
collection DOAJ
language English
format Article
sources DOAJ
author Ling Zhang
Jingzhi Zhang
Jiong Niu
Q. M. Jonathan Wu
Gangsheng Li
spellingShingle Ling Zhang
Jingzhi Zhang
Jiong Niu
Q. M. Jonathan Wu
Gangsheng Li
Track Prediction for HF Radar Vessels Submerged in Strong Clutter Based on MSCNN Fusion with GRU-AM and AR Model
Remote Sensing
HF radar
track prediction
multiscale convolution
GRU
attention mechanism
autoregressive model
author_facet Ling Zhang
Jingzhi Zhang
Jiong Niu
Q. M. Jonathan Wu
Gangsheng Li
author_sort Ling Zhang
title Track Prediction for HF Radar Vessels Submerged in Strong Clutter Based on MSCNN Fusion with GRU-AM and AR Model
title_short Track Prediction for HF Radar Vessels Submerged in Strong Clutter Based on MSCNN Fusion with GRU-AM and AR Model
title_full Track Prediction for HF Radar Vessels Submerged in Strong Clutter Based on MSCNN Fusion with GRU-AM and AR Model
title_fullStr Track Prediction for HF Radar Vessels Submerged in Strong Clutter Based on MSCNN Fusion with GRU-AM and AR Model
title_full_unstemmed Track Prediction for HF Radar Vessels Submerged in Strong Clutter Based on MSCNN Fusion with GRU-AM and AR Model
title_sort track prediction for hf radar vessels submerged in strong clutter based on mscnn fusion with gru-am and ar model
publisher MDPI AG
series Remote Sensing
issn 2072-4292
publishDate 2021-05-01
description High-frequency (HF) surface-wave radar has a wide range of applications in marine monitoring due to its long-distance, wide-area, and all-weather detection ability. However, the accurate detection of HF radar vessels is severely restricted by strong clutter and interference, causing the echo of vessels completely submerged by clutter. As a result, the target cannot be detected and tracked for a period of time under the influence of strong clutter, which causes broken trajectories. To solve this problem, we propose an HF radar-vessel trajectory-prediction method based on a multi-scale convolutional neural network (MSCNN) that combines a gated recurrent unit and attention mechanism (GRU-AM) and a fusion with an autoregressive (AR) model. The vessel’s latitude and longitude information obtained by the HF radar is sent into the convolutional neural network (CNN) with different window lengths in parallel, and feature fusion is performed on the extracted multi-scale features. The deep GRU model is built to learn the time series with the GRU structure to preserve historical information. Different weights are given to the features using the temporal attention mechanism (AM), which helps the network learn the key information. The linear information on latitude and longitude at the current timestep is forecast by combining the AR model with the trajectory output from the AM to achieve a combination of linear and nonlinear prediction models. To make full use of the HF radar tracking information, the broken trajectory prediction is carried out by forward and backward computation using data from before and after the fracture, respectively. Weights are then assigned to the two predicted results by the entropy-value method to obtain the final ship trajectory by weighted summation. Field experiments show that the proposed method can accurately forecast the trajectories of vessels concealed in clutter. In comparison with other mainstream methods, the new method performs better in estimation accuracy for HF radar vessels concealed in clutter.
topic HF radar
track prediction
multiscale convolution
GRU
attention mechanism
autoregressive model
url https://www.mdpi.com/2072-4292/13/11/2164
work_keys_str_mv AT lingzhang trackpredictionforhfradarvesselssubmergedinstrongclutterbasedonmscnnfusionwithgruamandarmodel
AT jingzhizhang trackpredictionforhfradarvesselssubmergedinstrongclutterbasedonmscnnfusionwithgruamandarmodel
AT jiongniu trackpredictionforhfradarvesselssubmergedinstrongclutterbasedonmscnnfusionwithgruamandarmodel
AT qmjonathanwu trackpredictionforhfradarvesselssubmergedinstrongclutterbasedonmscnnfusionwithgruamandarmodel
AT gangshengli trackpredictionforhfradarvesselssubmergedinstrongclutterbasedonmscnnfusionwithgruamandarmodel
_version_ 1721411454881497088