Glycogen Synthase Kinase-3β and Caspase-2 Mediate Ceramide- and Etoposide-Induced Apoptosis by Regulating the Lysosomal-Mitochondrial Axis.

Glycogen synthase kinase-3β (GSK-3β) regulates the sequential activation of caspase-2 and caspase-8 before mitochondrial apoptosis. Here, we report the regulation of Mcl-1 destabilization and cathepsin D-regulated caspase-8 activation by GSK-3β and caspase-2. Treatment with either the ceramide analo...

Full description

Bibliographic Details
Main Authors: Chiou-Feng Lin, Cheng-Chieh Tsai, Wei-Ching Huang, Yu-Chih Wang, Po-Chun Tseng, Tsung-Ting Tsai, Chia-Ling Chen
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4699703?pdf=render
Description
Summary:Glycogen synthase kinase-3β (GSK-3β) regulates the sequential activation of caspase-2 and caspase-8 before mitochondrial apoptosis. Here, we report the regulation of Mcl-1 destabilization and cathepsin D-regulated caspase-8 activation by GSK-3β and caspase-2. Treatment with either the ceramide analogue C2-ceramide or the topoisomerase II inhibitor etoposide sequentially induced lysosomal membrane permeabilization (LMP), the reduction of mitochondrial transmembrane potential, and apoptosis. Following LMP, cathepsin D translocated from lysosomes to the cytoplasm, whereas inhibiting cathepsin D blocked mitochondrial apoptosis. Furthermore, cathepsin D caused the activation of caspase-8 but not caspase-2. Inhibiting GSK-3β and caspase-2 blocked Mcl-1 destabilization, LMP, cathepsin D re-localization, caspase-8 activation, and mitochondrial apoptosis. Expression of Mcl-1 was localized to the lysosomes, and forced expression of Mcl-1 prevented apoptotic signaling via the lysosomal-mitochondrial pathway. These results demonstrate the importance of GSK-3β and caspase-2 in ceramide- and etoposide-induced apoptosis through mechanisms involving Mcl-1 destabilization and the lysosomal-mitochondrial axis.
ISSN:1932-6203