Assessing enigmatic boulder deposits in NE Aegean Sea: importance of historical sources as tool to support hydrodynamic equations
Due to their importance in the assessment of coastal hazards, several studies have focused on geomorphological and sedimentological field evidence of catastrophic wave impacts related to historical tsunami events. Among them, many authors used boulder fields as important indicators of past tsunamis,...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2012-04-01
|
Series: | Natural Hazards and Earth System Sciences |
Online Access: | http://www.nat-hazards-earth-syst-sci.net/12/1109/2012/nhess-12-1109-2012.pdf |
id |
doaj-3edbd877a30942fbab30fb995c8e4bef |
---|---|
record_format |
Article |
spelling |
doaj-3edbd877a30942fbab30fb995c8e4bef2020-11-25T01:19:14ZengCopernicus PublicationsNatural Hazards and Earth System Sciences1561-86331684-99812012-04-011241109111810.5194/nhess-12-1109-2012Assessing enigmatic boulder deposits in NE Aegean Sea: importance of historical sources as tool to support hydrodynamic equationsM. VacchiA. RovereN. ZourosM. FirpoDue to their importance in the assessment of coastal hazards, several studies have focused on geomorphological and sedimentological field evidence of catastrophic wave impacts related to historical tsunami events. Among them, many authors used boulder fields as important indicators of past tsunamis, especially in the Mediterranean Sea. The aim of this study was to understand the mechanism of deposition of clusters of large boulders, consisting of beachrock slabs, which were found on the southern coasts of Lesvos Island (NE Aegean Sea). Methods to infer the origin of boulder deposits (tsunami vs. storm wave) are often based on hydrodynamic models even if different environmental complexities are difficult to be incorporated into numerical models. In this study, hydrodynamic equations did not provide unequivocal indication of the mechanism responsible for boulder deposition in the study area. Further analyses, ranging from geomorphologic to seismotectonic data, indicated a tsunami as the most likely cause of displacement of the boulders but still do not allow to totally exclude the extreme storm origin. Additional historical investigations (based on tsunami catalogues, historical photos and aged inhabitants interviews) indicated that the boulders are likely to have been deposited by the tsunami triggered by the 6.7 <i>M</i><sub>s</sub> Chios-Karaburum earthquake of 1949 or, alternatively, by minor effects of the destructive tsunami produced by 1956's Amorgos Island earthquake. Results of this study point out that, at Mediterranean scale, to flank numerical models with the huge amount of the available historical data become a crucial tool in terms of prevention policies related to catastrophic coastal events.http://www.nat-hazards-earth-syst-sci.net/12/1109/2012/nhess-12-1109-2012.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
M. Vacchi A. Rovere N. Zouros M. Firpo |
spellingShingle |
M. Vacchi A. Rovere N. Zouros M. Firpo Assessing enigmatic boulder deposits in NE Aegean Sea: importance of historical sources as tool to support hydrodynamic equations Natural Hazards and Earth System Sciences |
author_facet |
M. Vacchi A. Rovere N. Zouros M. Firpo |
author_sort |
M. Vacchi |
title |
Assessing enigmatic boulder deposits in NE Aegean Sea: importance of historical sources as tool to support hydrodynamic equations |
title_short |
Assessing enigmatic boulder deposits in NE Aegean Sea: importance of historical sources as tool to support hydrodynamic equations |
title_full |
Assessing enigmatic boulder deposits in NE Aegean Sea: importance of historical sources as tool to support hydrodynamic equations |
title_fullStr |
Assessing enigmatic boulder deposits in NE Aegean Sea: importance of historical sources as tool to support hydrodynamic equations |
title_full_unstemmed |
Assessing enigmatic boulder deposits in NE Aegean Sea: importance of historical sources as tool to support hydrodynamic equations |
title_sort |
assessing enigmatic boulder deposits in ne aegean sea: importance of historical sources as tool to support hydrodynamic equations |
publisher |
Copernicus Publications |
series |
Natural Hazards and Earth System Sciences |
issn |
1561-8633 1684-9981 |
publishDate |
2012-04-01 |
description |
Due to their importance in the assessment of coastal hazards, several studies have focused on geomorphological and sedimentological field evidence of catastrophic wave impacts related to historical tsunami events. Among them, many authors used boulder fields as important indicators of past tsunamis, especially in the Mediterranean Sea. The aim of this study was to understand the mechanism of deposition of clusters of large boulders, consisting of beachrock slabs, which were found on the southern coasts of Lesvos Island (NE Aegean Sea). Methods to infer the origin of boulder deposits (tsunami vs. storm wave) are often based on hydrodynamic models even if different environmental complexities are difficult to be incorporated into numerical models. In this study, hydrodynamic equations did not provide unequivocal indication of the mechanism responsible for boulder deposition in the study area. Further analyses, ranging from geomorphologic to seismotectonic data, indicated a tsunami as the most likely cause of displacement of the boulders but still do not allow to totally exclude the extreme storm origin. Additional historical investigations (based on tsunami catalogues, historical photos and aged inhabitants interviews) indicated that the boulders are likely to have been deposited by the tsunami triggered by the 6.7 <i>M</i><sub>s</sub> Chios-Karaburum earthquake of 1949 or, alternatively, by minor effects of the destructive tsunami produced by 1956's Amorgos Island earthquake. Results of this study point out that, at Mediterranean scale, to flank numerical models with the huge amount of the available historical data become a crucial tool in terms of prevention policies related to catastrophic coastal events. |
url |
http://www.nat-hazards-earth-syst-sci.net/12/1109/2012/nhess-12-1109-2012.pdf |
work_keys_str_mv |
AT mvacchi assessingenigmaticboulderdepositsinneaegeanseaimportanceofhistoricalsourcesastooltosupporthydrodynamicequations AT arovere assessingenigmaticboulderdepositsinneaegeanseaimportanceofhistoricalsourcesastooltosupporthydrodynamicequations AT nzouros assessingenigmaticboulderdepositsinneaegeanseaimportanceofhistoricalsourcesastooltosupporthydrodynamicequations AT mfirpo assessingenigmaticboulderdepositsinneaegeanseaimportanceofhistoricalsourcesastooltosupporthydrodynamicequations |
_version_ |
1725139343293546496 |