Data on the thermo-fluid simulation of open-cathode fuel cell stack depending on the location of the oxidizer/cooling supply system
The content of this paper provides simulation data of the distribution of temperature fields, and oxidizer/cooling agent (air) flows in dependence with location of the oxidizer/cooling supply system in open-cathode polymer electrolyte membrane fuel cell (PEMFC) stack. The finite element method in So...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-08-01
|
Series: | Data in Brief |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S235234092030665X |
Summary: | The content of this paper provides simulation data of the distribution of temperature fields, and oxidizer/cooling agent (air) flows in dependence with location of the oxidizer/cooling supply system in open-cathode polymer electrolyte membrane fuel cell (PEMFC) stack. The finite element method in Solid Works Simulation and Solid Works Flow Simulation software were used for bipolar plate strength calculation and thermo-fluid simulation of PEMFC stack with forced-air convection. The simulations were carried out for two variants of the oxidizer/cooling supply system location - at the entrance to the fuel cell stack (air injection) and at the outlet of the fuel cell stack (air intake). |
---|---|
ISSN: | 2352-3409 |