Coincidence theory for spaces which fiber over a nilmanifold

<p/> <p>Let <inline-formula><graphic file="1687-1812-2004-986365-i1.gif"/></inline-formula> be a finite connected complex and <inline-formula><graphic file="1687-1812-2004-986365-i2.gif"/></inline-formula> a fibration over a compact...

Full description

Bibliographic Details
Main Author: Wong Peter
Format: Article
Language:English
Published: SpringerOpen 2004-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2004/986365
id doaj-3ea6f3d074b64db39fdf3ecfe8c81fa8
record_format Article
spelling doaj-3ea6f3d074b64db39fdf3ecfe8c81fa82020-11-24T22:30:37ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122004-01-0120042986365Coincidence theory for spaces which fiber over a nilmanifoldWong Peter<p/> <p>Let <inline-formula><graphic file="1687-1812-2004-986365-i1.gif"/></inline-formula> be a finite connected complex and <inline-formula><graphic file="1687-1812-2004-986365-i2.gif"/></inline-formula> a fibration over a compact nilmanifold <inline-formula><graphic file="1687-1812-2004-986365-i3.gif"/></inline-formula>. For any finite complex <inline-formula><graphic file="1687-1812-2004-986365-i4.gif"/></inline-formula> and maps <inline-formula><graphic file="1687-1812-2004-986365-i5.gif"/></inline-formula>, we show that the Nielsen coincidence number <inline-formula><graphic file="1687-1812-2004-986365-i6.gif"/></inline-formula> vanishes if the Reidemeister coincidence number <inline-formula><graphic file="1687-1812-2004-986365-i7.gif"/></inline-formula> is infinite. If, in addition, <inline-formula><graphic file="1687-1812-2004-986365-i8.gif"/></inline-formula> is a compact manifold and <inline-formula><graphic file="1687-1812-2004-986365-i9.gif"/></inline-formula> is the constant map at a point <inline-formula><graphic file="1687-1812-2004-986365-i10.gif"/></inline-formula>, then <inline-formula><graphic file="1687-1812-2004-986365-i11.gif"/></inline-formula> is deformable to a map <inline-formula><graphic file="1687-1812-2004-986365-i12.gif"/></inline-formula> such that <inline-formula><graphic file="1687-1812-2004-986365-i13.gif"/></inline-formula>.</p>http://www.fixedpointtheoryandapplications.com/content/2004/986365
collection DOAJ
language English
format Article
sources DOAJ
author Wong Peter
spellingShingle Wong Peter
Coincidence theory for spaces which fiber over a nilmanifold
Fixed Point Theory and Applications
author_facet Wong Peter
author_sort Wong Peter
title Coincidence theory for spaces which fiber over a nilmanifold
title_short Coincidence theory for spaces which fiber over a nilmanifold
title_full Coincidence theory for spaces which fiber over a nilmanifold
title_fullStr Coincidence theory for spaces which fiber over a nilmanifold
title_full_unstemmed Coincidence theory for spaces which fiber over a nilmanifold
title_sort coincidence theory for spaces which fiber over a nilmanifold
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
1687-1812
publishDate 2004-01-01
description <p/> <p>Let <inline-formula><graphic file="1687-1812-2004-986365-i1.gif"/></inline-formula> be a finite connected complex and <inline-formula><graphic file="1687-1812-2004-986365-i2.gif"/></inline-formula> a fibration over a compact nilmanifold <inline-formula><graphic file="1687-1812-2004-986365-i3.gif"/></inline-formula>. For any finite complex <inline-formula><graphic file="1687-1812-2004-986365-i4.gif"/></inline-formula> and maps <inline-formula><graphic file="1687-1812-2004-986365-i5.gif"/></inline-formula>, we show that the Nielsen coincidence number <inline-formula><graphic file="1687-1812-2004-986365-i6.gif"/></inline-formula> vanishes if the Reidemeister coincidence number <inline-formula><graphic file="1687-1812-2004-986365-i7.gif"/></inline-formula> is infinite. If, in addition, <inline-formula><graphic file="1687-1812-2004-986365-i8.gif"/></inline-formula> is a compact manifold and <inline-formula><graphic file="1687-1812-2004-986365-i9.gif"/></inline-formula> is the constant map at a point <inline-formula><graphic file="1687-1812-2004-986365-i10.gif"/></inline-formula>, then <inline-formula><graphic file="1687-1812-2004-986365-i11.gif"/></inline-formula> is deformable to a map <inline-formula><graphic file="1687-1812-2004-986365-i12.gif"/></inline-formula> such that <inline-formula><graphic file="1687-1812-2004-986365-i13.gif"/></inline-formula>.</p>
url http://www.fixedpointtheoryandapplications.com/content/2004/986365
work_keys_str_mv AT wongpeter coincidencetheoryforspaceswhichfiberoveranilmanifold
_version_ 1716510218797449216