Coincidence theory for spaces which fiber over a nilmanifold
<p/> <p>Let <inline-formula><graphic file="1687-1812-2004-986365-i1.gif"/></inline-formula> be a finite connected complex and <inline-formula><graphic file="1687-1812-2004-986365-i2.gif"/></inline-formula> a fibration over a compact...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2004-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2004/986365 |
id |
doaj-3ea6f3d074b64db39fdf3ecfe8c81fa8 |
---|---|
record_format |
Article |
spelling |
doaj-3ea6f3d074b64db39fdf3ecfe8c81fa82020-11-24T22:30:37ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122004-01-0120042986365Coincidence theory for spaces which fiber over a nilmanifoldWong Peter<p/> <p>Let <inline-formula><graphic file="1687-1812-2004-986365-i1.gif"/></inline-formula> be a finite connected complex and <inline-formula><graphic file="1687-1812-2004-986365-i2.gif"/></inline-formula> a fibration over a compact nilmanifold <inline-formula><graphic file="1687-1812-2004-986365-i3.gif"/></inline-formula>. For any finite complex <inline-formula><graphic file="1687-1812-2004-986365-i4.gif"/></inline-formula> and maps <inline-formula><graphic file="1687-1812-2004-986365-i5.gif"/></inline-formula>, we show that the Nielsen coincidence number <inline-formula><graphic file="1687-1812-2004-986365-i6.gif"/></inline-formula> vanishes if the Reidemeister coincidence number <inline-formula><graphic file="1687-1812-2004-986365-i7.gif"/></inline-formula> is infinite. If, in addition, <inline-formula><graphic file="1687-1812-2004-986365-i8.gif"/></inline-formula> is a compact manifold and <inline-formula><graphic file="1687-1812-2004-986365-i9.gif"/></inline-formula> is the constant map at a point <inline-formula><graphic file="1687-1812-2004-986365-i10.gif"/></inline-formula>, then <inline-formula><graphic file="1687-1812-2004-986365-i11.gif"/></inline-formula> is deformable to a map <inline-formula><graphic file="1687-1812-2004-986365-i12.gif"/></inline-formula> such that <inline-formula><graphic file="1687-1812-2004-986365-i13.gif"/></inline-formula>.</p>http://www.fixedpointtheoryandapplications.com/content/2004/986365 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Wong Peter |
spellingShingle |
Wong Peter Coincidence theory for spaces which fiber over a nilmanifold Fixed Point Theory and Applications |
author_facet |
Wong Peter |
author_sort |
Wong Peter |
title |
Coincidence theory for spaces which fiber over a nilmanifold |
title_short |
Coincidence theory for spaces which fiber over a nilmanifold |
title_full |
Coincidence theory for spaces which fiber over a nilmanifold |
title_fullStr |
Coincidence theory for spaces which fiber over a nilmanifold |
title_full_unstemmed |
Coincidence theory for spaces which fiber over a nilmanifold |
title_sort |
coincidence theory for spaces which fiber over a nilmanifold |
publisher |
SpringerOpen |
series |
Fixed Point Theory and Applications |
issn |
1687-1820 1687-1812 |
publishDate |
2004-01-01 |
description |
<p/> <p>Let <inline-formula><graphic file="1687-1812-2004-986365-i1.gif"/></inline-formula> be a finite connected complex and <inline-formula><graphic file="1687-1812-2004-986365-i2.gif"/></inline-formula> a fibration over a compact nilmanifold <inline-formula><graphic file="1687-1812-2004-986365-i3.gif"/></inline-formula>. For any finite complex <inline-formula><graphic file="1687-1812-2004-986365-i4.gif"/></inline-formula> and maps <inline-formula><graphic file="1687-1812-2004-986365-i5.gif"/></inline-formula>, we show that the Nielsen coincidence number <inline-formula><graphic file="1687-1812-2004-986365-i6.gif"/></inline-formula> vanishes if the Reidemeister coincidence number <inline-formula><graphic file="1687-1812-2004-986365-i7.gif"/></inline-formula> is infinite. If, in addition, <inline-formula><graphic file="1687-1812-2004-986365-i8.gif"/></inline-formula> is a compact manifold and <inline-formula><graphic file="1687-1812-2004-986365-i9.gif"/></inline-formula> is the constant map at a point <inline-formula><graphic file="1687-1812-2004-986365-i10.gif"/></inline-formula>, then <inline-formula><graphic file="1687-1812-2004-986365-i11.gif"/></inline-formula> is deformable to a map <inline-formula><graphic file="1687-1812-2004-986365-i12.gif"/></inline-formula> such that <inline-formula><graphic file="1687-1812-2004-986365-i13.gif"/></inline-formula>.</p> |
url |
http://www.fixedpointtheoryandapplications.com/content/2004/986365 |
work_keys_str_mv |
AT wongpeter coincidencetheoryforspaceswhichfiberoveranilmanifold |
_version_ |
1716510218797449216 |