Composition of human-specific slow codons and slow di-codons in SARS-CoV and 2019-nCoV are lower than other coronaviruses suggesting a faster protein synthesis rate of SARS-CoV and 2019-nCoV

Translation of a genetic codon without a cognate tRNA gene is affected by both the cognate tRNA availability and the interaction with non-cognate isoacceptor tRNAs. Moreover, two consecutive slow codons (slow di-codons) lead to a much slower translation rate. Calculating the composition of host spec...

Full description

Bibliographic Details
Main Authors: Chu-Wen Yang, Mei-Fang Chen
Format: Article
Language:English
Published: Elsevier 2020-06-01
Series:Journal of Microbiology, Immunology and Infection
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1684118220300591
Description
Summary:Translation of a genetic codon without a cognate tRNA gene is affected by both the cognate tRNA availability and the interaction with non-cognate isoacceptor tRNAs. Moreover, two consecutive slow codons (slow di-codons) lead to a much slower translation rate. Calculating the composition of host specific slow codons and slow di-codons in the viral protein coding sequences can predict the order of viral protein synthesis rates between different virus strains.Comparison of human-specific slow codon and slow di-codon compositions in the genomes of 590 coronaviruses infect humans revealed that the protein synthetic rates of 2019 novel coronavirus (2019-nCoV) and severe acute respiratory syndrome-related coronavirus (SARS-CoV) may be much faster than other coronaviruses infect humans. Analysis of host-specific slow codon and di-codon compositions provides links between viral genomic sequences and capability of virus replication in host cells that may be useful for surveillance of the transmission potential of novel viruses.
ISSN:1684-1182