Existence of solutions for quasilinear degenerate elliptic equations

In this paper, we study the existence of solutions for quasilinear degenerate elliptic equations of the form $A(u)+g(x,u,abla u)=h$, where $A$ is a Leray-Lions operator from $W_0^{1,p}(Omega,w)$ to its dual. On the nonlinear term $g(x,s,xi)$, we assume growth conditions on $xi$, not on $s$, and a si...

Full description

Bibliographic Details
Main Authors: Y. Akdim, E. Azroul, A. Benkirane
Format: Article
Language:English
Published: Texas State University 2001-11-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2001/71/abstr.html
id doaj-3e5f32d3f04049128a8cf957c6831670
record_format Article
spelling doaj-3e5f32d3f04049128a8cf957c68316702020-11-24T22:31:18ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912001-11-01200171119Existence of solutions for quasilinear degenerate elliptic equationsY. AkdimE. AzroulA. BenkiraneIn this paper, we study the existence of solutions for quasilinear degenerate elliptic equations of the form $A(u)+g(x,u,abla u)=h$, where $A$ is a Leray-Lions operator from $W_0^{1,p}(Omega,w)$ to its dual. On the nonlinear term $g(x,s,xi)$, we assume growth conditions on $xi$, not on $s$, and a sign condition on $s$. http://ejde.math.txstate.edu/Volumes/2001/71/abstr.htmlWeighted Sobolev spacesHardy inequalityQuasilinear degenerate elliptic operators.
collection DOAJ
language English
format Article
sources DOAJ
author Y. Akdim
E. Azroul
A. Benkirane
spellingShingle Y. Akdim
E. Azroul
A. Benkirane
Existence of solutions for quasilinear degenerate elliptic equations
Electronic Journal of Differential Equations
Weighted Sobolev spaces
Hardy inequality
Quasilinear degenerate elliptic operators.
author_facet Y. Akdim
E. Azroul
A. Benkirane
author_sort Y. Akdim
title Existence of solutions for quasilinear degenerate elliptic equations
title_short Existence of solutions for quasilinear degenerate elliptic equations
title_full Existence of solutions for quasilinear degenerate elliptic equations
title_fullStr Existence of solutions for quasilinear degenerate elliptic equations
title_full_unstemmed Existence of solutions for quasilinear degenerate elliptic equations
title_sort existence of solutions for quasilinear degenerate elliptic equations
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2001-11-01
description In this paper, we study the existence of solutions for quasilinear degenerate elliptic equations of the form $A(u)+g(x,u,abla u)=h$, where $A$ is a Leray-Lions operator from $W_0^{1,p}(Omega,w)$ to its dual. On the nonlinear term $g(x,s,xi)$, we assume growth conditions on $xi$, not on $s$, and a sign condition on $s$.
topic Weighted Sobolev spaces
Hardy inequality
Quasilinear degenerate elliptic operators.
url http://ejde.math.txstate.edu/Volumes/2001/71/abstr.html
work_keys_str_mv AT yakdim existenceofsolutionsforquasilineardegenerateellipticequations
AT eazroul existenceofsolutionsforquasilineardegenerateellipticequations
AT abenkirane existenceofsolutionsforquasilineardegenerateellipticequations
_version_ 1725737728901906432