Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training
Eccentric exercise is characterized by initial unfavorable effects such as subcellular muscle damage, pain, reduced fiber excitability, and initial muscle weakness. However, stretch combined with overload, as in eccentric contractions, is an effective stimulus for inducing physiological and neural a...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2015-01-01
|
Series: | BioMed Research International |
Online Access: | http://dx.doi.org/10.1155/2015/193741 |
Summary: | Eccentric exercise is characterized by initial unfavorable effects such as subcellular muscle damage, pain, reduced fiber excitability, and initial muscle weakness. However, stretch combined with overload, as in eccentric contractions, is an effective stimulus for inducing physiological and neural adaptations to training. Eccentric exercise-induced adaptations include muscle hypertrophy, increased cortical activity, and changes in motor unit behavior, all of which contribute to improved muscle function. In this brief review, neuromuscular adaptations to different forms of exercise are reviewed, the positive training effects of eccentric exercise are presented, and the implications for training are considered. |
---|---|
ISSN: | 2314-6133 2314-6141 |