Fast Correction of “Finite Aperture Effect” in Photoacoustic Tomography Based on Spatial Impulse Response

Photoacoustic computed tomography (PACT) is a fast-developing imaging technique, which can provide structural and functional information in biological tissues with high-resolution beyond the depth of the optical diffusion limit. However, the most current PACT reconstruction method generally employs...

Full description

Bibliographic Details
Main Authors: Xiaofei Luo, Jiaying Xiao, Congcong Wang, Bo Wang
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/8/9/356
Description
Summary:Photoacoustic computed tomography (PACT) is a fast-developing imaging technique, which can provide structural and functional information in biological tissues with high-resolution beyond the depth of the optical diffusion limit. However, the most current PACT reconstruction method generally employs a point detector assumption, whereas in most PAT systems with circular or spherical scanning modes, the transducer is mostly flat and with a finite size. This model mismatch leads to a notable deterioration in the lateral direction in regions far from the rotation center, which is known as the “finite aperture effect”. In this work, we propose to compensate a novel Back-projection (BP) method based on the transducer’s spatial impulse response (SIR) for fast correction of the “finite aperture effect”. The SIR accounts for the waveform change of the transducer for an arbitrary point source due to the geometry of the detection surface. Simulation results showed that the proposed SIR-BP method can effectively improve the lateral resolution and signal to noise ratio (SNR) in the off-center regions. For a target 4.5 mm far from the rotation center, this new method improved the lateral resolution about five times along with a 7 dB increase in the SNR. Experimental results also showed that this SIR-BP method can well restore the image angular blur to recover small structures, as demonstrated by the imaging of leaf veins. This new method offers a valuable alternative to the conventional BP method, and can guide the design of PAT systems based on circular/spherical scan.
ISSN:2304-6732