Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data
Abstract Background Unsupervised machine learning methods (deep learning) have shown their usefulness with noisy single cell mRNA-sequencing data (scRNA-seq), where the models generalize well, despite the zero-inflation of the data. A class of neural networks, namely autoencoders, has been useful fo...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2019-07-01
|
Series: | BMC Bioinformatics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12859-019-2952-9 |