Metaheuristic-Based Machine Learning System for Prediction of Compressive Strength based on Concrete Mixture Properties and Early-Age Strength Test Results

Estimating the accurate concrete strength has become a critical issue in civil engi­neer­ing. The 28-day concrete cylinder test results depict the concrete's characteristic strength which was prepared and cast as part of the concrete work on the project. Waiting 28 days is important to guarante...

Full description

Bibliographic Details
Main Author: Doddy Prayogo
Format: Article
Language:English
Published: Petra Christian University 2018-03-01
Series:Civil Engineering Dimension
Subjects:
Online Access:http://puslit2.petra.ac.id/ejournal/index.php/civ/article/view/20646
Description
Summary:Estimating the accurate concrete strength has become a critical issue in civil engi­neer­ing. The 28-day concrete cylinder test results depict the concrete's characteristic strength which was prepared and cast as part of the concrete work on the project. Waiting 28 days is important to guarantee the quality control of the procedure, even though it is a slow process. This research develops an advanced machine learning method to forecast the concrete compressive strength using the concrete mix proportion and early-age strength test results. Thirty-eight historical cases in total were used to create the intelligence prediction method. The results obtained indicate the effectiveness of the advanced hybrid machine learning strategy in forecasting the strength of the concrete with a comparatively high degree of accuracy calculated using 4 error indicators. As a result, the suggested study can provide a great advantage for construction project managers in decision-making procedures that depend on early strength results of the tests.
ISSN:1410-9530
1979-570X