Modelling and analysis of grid-connected solar-PV system through current-mode controlled VSC

Recently, solar-PV energy becomes one of the most vital renewable resources of electrical energy as it is utilized in all life applications. In case of connecting the solar-PV system with the utility grid a voltage-sourced converter (VSC) is required to convert the extracted solar-PV array’s DC powe...

Full description

Bibliographic Details
Main Authors: Saad Elsayed, Elkoteshy Yasser, AbouZayed Usama
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/27/e3sconf_icesd2020_05005.pdf
Description
Summary:Recently, solar-PV energy becomes one of the most vital renewable resources of electrical energy as it is utilized in all life applications. In case of connecting the solar-PV system with the utility grid a voltage-sourced converter (VSC) is required to convert the extracted solar-PV array’s DC power into AC. There are many methods to dominate the active and reactive power produced from the VSC. In the following model we use the current mode control as it has some features such as highly output accuracy, protection against over current troubles, robustness against AC side voltage and load variations. As the produced power from the solar cells is intermittent, the point of maximum power has to be tracked using an MPPT technique. Also, in order to reduce the system harmonics a filter must be implemented in the model. In this paper, a complete model of 50KW grid-connected solar-PV system using current-mode controlled two-level three-phase VSC (grid imposed frequency VSC) is implemented. Also, the Incremental Conductance model to track the point of maximum available power (MPPT) and LCL filter has been provided into the system with total harmonic distortion (THD) analysis in PSCAD/EMTDC
ISSN:2267-1242