Strain coupling and dynamic relaxation in multiferroic metal-organic framework [(CH3)2NH2][Mn(HCOO)3] with perovskite structure
Strain coupling with ferromagnetism and ferroelectricity plays an important role in the development of multiferroic metal-organic frameworks (MOFs) with strong magnetoelectric coupling, but the underlying mechanisms have not been well understood. Strain coupling and dynamic relaxation in multiferroi...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2019-03-01
|
Series: | Results in Physics |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2211379718333734 |
id |
doaj-3df4ec31d5f644219f4c587dc90c3deb |
---|---|
record_format |
Article |
spelling |
doaj-3df4ec31d5f644219f4c587dc90c3deb2020-11-24T21:07:00ZengElsevierResults in Physics2211-37972019-03-011221832188Strain coupling and dynamic relaxation in multiferroic metal-organic framework [(CH3)2NH2][Mn(HCOO)3] with perovskite structureZhiying Zhang0Hao Tang1Dongpeng Cheng2Jikang Zhang3Yatao Chen4Xin Shen5Hongliang Yu6Corresponding author.; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, ChinaSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, ChinaSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, ChinaSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, ChinaSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, ChinaSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, ChinaSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, ChinaStrain coupling with ferromagnetism and ferroelectricity plays an important role in the development of multiferroic metal-organic frameworks (MOFs) with strong magnetoelectric coupling, but the underlying mechanisms have not been well understood. Strain coupling and dynamic relaxation in multiferroic MOF with perovskite structure [(CH3)2NH2][Mn(HCOO)3] were investigated using X-ray diffraction (XRD), Raman spectroscopy, Infra-red (IR) spectroscopy, differential scanning calorimetry (DSC), magnetic measurements and dynamic mechanical analysis (DMA). DSC results showed peaks at 183 K and 190 K at the rate of 5 K/min during cooling and heating processes, respectively. Magnetic measurements showed magnetic transition at ∼8.5 K at the heating rate of 2 K/min. Temperature and frequency dependences of elastic properties studied by DMA at frequencies of 0.5 Hz–10 Hz between 140 K and 300 K at heating rate of 2 K/min indicated that the minimum in storage modulus and the maximum in loss modulus and loss factor occurred near 190 K. The peak height of loss modulus and loss factor decreased at higher frequency, and the peak temperature was independent of frequency, showing the features of first-order phase transition. Near 190 K, paraelectric to ferroelectric phase transition triggered by disorder–order transition of alkylammonium cations located in the framework cavities occurred accompanied by the structural phase transition from rhombohedral space group R3-c to monoclinic space group Cc. The elastic anomalies and large energy loss near 190 K were associated with the coupling of the local strain with the freezing of dimethylammonium cation and the freezing of twin walls. Keywords: Metal-organic framework (MOF), Phase transition, Dynamic mechanical analysis (DMA), Elastic modulus, Energy losshttp://www.sciencedirect.com/science/article/pii/S2211379718333734 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zhiying Zhang Hao Tang Dongpeng Cheng Jikang Zhang Yatao Chen Xin Shen Hongliang Yu |
spellingShingle |
Zhiying Zhang Hao Tang Dongpeng Cheng Jikang Zhang Yatao Chen Xin Shen Hongliang Yu Strain coupling and dynamic relaxation in multiferroic metal-organic framework [(CH3)2NH2][Mn(HCOO)3] with perovskite structure Results in Physics |
author_facet |
Zhiying Zhang Hao Tang Dongpeng Cheng Jikang Zhang Yatao Chen Xin Shen Hongliang Yu |
author_sort |
Zhiying Zhang |
title |
Strain coupling and dynamic relaxation in multiferroic metal-organic framework [(CH3)2NH2][Mn(HCOO)3] with perovskite structure |
title_short |
Strain coupling and dynamic relaxation in multiferroic metal-organic framework [(CH3)2NH2][Mn(HCOO)3] with perovskite structure |
title_full |
Strain coupling and dynamic relaxation in multiferroic metal-organic framework [(CH3)2NH2][Mn(HCOO)3] with perovskite structure |
title_fullStr |
Strain coupling and dynamic relaxation in multiferroic metal-organic framework [(CH3)2NH2][Mn(HCOO)3] with perovskite structure |
title_full_unstemmed |
Strain coupling and dynamic relaxation in multiferroic metal-organic framework [(CH3)2NH2][Mn(HCOO)3] with perovskite structure |
title_sort |
strain coupling and dynamic relaxation in multiferroic metal-organic framework [(ch3)2nh2][mn(hcoo)3] with perovskite structure |
publisher |
Elsevier |
series |
Results in Physics |
issn |
2211-3797 |
publishDate |
2019-03-01 |
description |
Strain coupling with ferromagnetism and ferroelectricity plays an important role in the development of multiferroic metal-organic frameworks (MOFs) with strong magnetoelectric coupling, but the underlying mechanisms have not been well understood. Strain coupling and dynamic relaxation in multiferroic MOF with perovskite structure [(CH3)2NH2][Mn(HCOO)3] were investigated using X-ray diffraction (XRD), Raman spectroscopy, Infra-red (IR) spectroscopy, differential scanning calorimetry (DSC), magnetic measurements and dynamic mechanical analysis (DMA). DSC results showed peaks at 183 K and 190 K at the rate of 5 K/min during cooling and heating processes, respectively. Magnetic measurements showed magnetic transition at ∼8.5 K at the heating rate of 2 K/min. Temperature and frequency dependences of elastic properties studied by DMA at frequencies of 0.5 Hz–10 Hz between 140 K and 300 K at heating rate of 2 K/min indicated that the minimum in storage modulus and the maximum in loss modulus and loss factor occurred near 190 K. The peak height of loss modulus and loss factor decreased at higher frequency, and the peak temperature was independent of frequency, showing the features of first-order phase transition. Near 190 K, paraelectric to ferroelectric phase transition triggered by disorder–order transition of alkylammonium cations located in the framework cavities occurred accompanied by the structural phase transition from rhombohedral space group R3-c to monoclinic space group Cc. The elastic anomalies and large energy loss near 190 K were associated with the coupling of the local strain with the freezing of dimethylammonium cation and the freezing of twin walls. Keywords: Metal-organic framework (MOF), Phase transition, Dynamic mechanical analysis (DMA), Elastic modulus, Energy loss |
url |
http://www.sciencedirect.com/science/article/pii/S2211379718333734 |
work_keys_str_mv |
AT zhiyingzhang straincouplinganddynamicrelaxationinmultiferroicmetalorganicframeworkch32nh2mnhcoo3withperovskitestructure AT haotang straincouplinganddynamicrelaxationinmultiferroicmetalorganicframeworkch32nh2mnhcoo3withperovskitestructure AT dongpengcheng straincouplinganddynamicrelaxationinmultiferroicmetalorganicframeworkch32nh2mnhcoo3withperovskitestructure AT jikangzhang straincouplinganddynamicrelaxationinmultiferroicmetalorganicframeworkch32nh2mnhcoo3withperovskitestructure AT yataochen straincouplinganddynamicrelaxationinmultiferroicmetalorganicframeworkch32nh2mnhcoo3withperovskitestructure AT xinshen straincouplinganddynamicrelaxationinmultiferroicmetalorganicframeworkch32nh2mnhcoo3withperovskitestructure AT hongliangyu straincouplinganddynamicrelaxationinmultiferroicmetalorganicframeworkch32nh2mnhcoo3withperovskitestructure |
_version_ |
1716764048225206272 |