The spectrum of resistance in SR/CR mice: the critical role of chemoattraction in the cancer/leukocyte interaction

<p>Abstract</p> <p>Background</p> <p>Spontaneous regression/complete resistance (SR/CR) mice are a unique colony of mice that possess an inheritable, natural cancer resistance mediated primarily by innate cellular immunity. This resistance is effective against sarcoma 1...

Full description

Bibliographic Details
Main Authors: Hicks Amy M, Sanders Anne M, Blanks Michael J, Stehle John R, Adams Jonathan, Riedlinger Gregory, Willingham Mark C, Cui Zheng
Format: Article
Language:English
Published: BMC 2010-05-01
Series:BMC Cancer
Online Access:http://www.biomedcentral.com/1471-2407/10/179
id doaj-3def3b3660884d4e9d27117b164c8719
record_format Article
spelling doaj-3def3b3660884d4e9d27117b164c87192020-11-25T01:58:30ZengBMCBMC Cancer1471-24072010-05-0110117910.1186/1471-2407-10-179The spectrum of resistance in SR/CR mice: the critical role of chemoattraction in the cancer/leukocyte interactionHicks Amy MSanders Anne MBlanks Michael JStehle John RAdams JonathanRiedlinger GregoryWillingham Mark CCui Zheng<p>Abstract</p> <p>Background</p> <p>Spontaneous regression/complete resistance (SR/CR) mice are a unique colony of mice that possess an inheritable, natural cancer resistance mediated primarily by innate cellular immunity. This resistance is effective against sarcoma 180 (S180) at exceptionally high doses and these mice remain healthy.</p> <p>Methods</p> <p>In this study, we challenged SR/CR mice with additional lethal transplantable mouse cancer cell lines to determine their resistance spectrum. The ability of these transplantable cancer cell lines to induce leukocyte infiltration was quantified and the percentage of different populations of responding immune cells was determined using flow cytometry.</p> <p>Results</p> <p>In comparison to wild type (WT) mice, SR/CR mice showed significantly higher resistance to all cancer cell lines tested. However, SR/CR mice were more sensitive to MethA sarcoma (MethA), B16 melanoma (B16), LL/2 lung carcinoma (LL/2) and J774 lymphoma (J774) than to sarcoma 180 (S180) and EL-4 lymphoma (EL-4). Further mechanistic studies revealed that this lower resistance to MethA and LL/2 was due to the inability of these cancer cells to attract SR/CR leukocytes, leading to tumor cell escape from resistance mechanism. This escape mechanism was overcome by co-injection with S180, which could attract SR/CR leukocytes allowing the mice to resist higher doses of MethA and LL/2. S180-induced cell-free ascites fluid (CFAF) co-injection recapitulated the results obtained with live S180 cells, suggesting that this chemoattraction by cancer cells is mediated by diffusible molecules. We also tested for the first time whether SR/CR mice were able to resist additional cancer cell lines prior to S180 exposure. We found that SR/CR mice had an innate resistance against EL-4 and J774.</p> <p>Conclusions</p> <p>Our results suggest that the cancer resistance in SR/CR mice is based on at least two separate processes: leukocyte migration/infiltration to the site of cancer cells and recognition of common surface properties on cancer cells. The infiltration of SR/CR leukocytes was based on both the innate ability of leukocytes to respond to chemotactic signals produced by cancer cells and on whether cancer cells produced these chemotactic signals. We found that some cancer cells could escape from SR/CR resistance because they did not induce infiltration of SR/CR leukocytes. However, if infiltration of leukocytes was induced by co-injection with chemotactic factors, these same cancer cells could be effectively recognized and killed by SR/CR leukocytes.</p> http://www.biomedcentral.com/1471-2407/10/179
collection DOAJ
language English
format Article
sources DOAJ
author Hicks Amy M
Sanders Anne M
Blanks Michael J
Stehle John R
Adams Jonathan
Riedlinger Gregory
Willingham Mark C
Cui Zheng
spellingShingle Hicks Amy M
Sanders Anne M
Blanks Michael J
Stehle John R
Adams Jonathan
Riedlinger Gregory
Willingham Mark C
Cui Zheng
The spectrum of resistance in SR/CR mice: the critical role of chemoattraction in the cancer/leukocyte interaction
BMC Cancer
author_facet Hicks Amy M
Sanders Anne M
Blanks Michael J
Stehle John R
Adams Jonathan
Riedlinger Gregory
Willingham Mark C
Cui Zheng
author_sort Hicks Amy M
title The spectrum of resistance in SR/CR mice: the critical role of chemoattraction in the cancer/leukocyte interaction
title_short The spectrum of resistance in SR/CR mice: the critical role of chemoattraction in the cancer/leukocyte interaction
title_full The spectrum of resistance in SR/CR mice: the critical role of chemoattraction in the cancer/leukocyte interaction
title_fullStr The spectrum of resistance in SR/CR mice: the critical role of chemoattraction in the cancer/leukocyte interaction
title_full_unstemmed The spectrum of resistance in SR/CR mice: the critical role of chemoattraction in the cancer/leukocyte interaction
title_sort spectrum of resistance in sr/cr mice: the critical role of chemoattraction in the cancer/leukocyte interaction
publisher BMC
series BMC Cancer
issn 1471-2407
publishDate 2010-05-01
description <p>Abstract</p> <p>Background</p> <p>Spontaneous regression/complete resistance (SR/CR) mice are a unique colony of mice that possess an inheritable, natural cancer resistance mediated primarily by innate cellular immunity. This resistance is effective against sarcoma 180 (S180) at exceptionally high doses and these mice remain healthy.</p> <p>Methods</p> <p>In this study, we challenged SR/CR mice with additional lethal transplantable mouse cancer cell lines to determine their resistance spectrum. The ability of these transplantable cancer cell lines to induce leukocyte infiltration was quantified and the percentage of different populations of responding immune cells was determined using flow cytometry.</p> <p>Results</p> <p>In comparison to wild type (WT) mice, SR/CR mice showed significantly higher resistance to all cancer cell lines tested. However, SR/CR mice were more sensitive to MethA sarcoma (MethA), B16 melanoma (B16), LL/2 lung carcinoma (LL/2) and J774 lymphoma (J774) than to sarcoma 180 (S180) and EL-4 lymphoma (EL-4). Further mechanistic studies revealed that this lower resistance to MethA and LL/2 was due to the inability of these cancer cells to attract SR/CR leukocytes, leading to tumor cell escape from resistance mechanism. This escape mechanism was overcome by co-injection with S180, which could attract SR/CR leukocytes allowing the mice to resist higher doses of MethA and LL/2. S180-induced cell-free ascites fluid (CFAF) co-injection recapitulated the results obtained with live S180 cells, suggesting that this chemoattraction by cancer cells is mediated by diffusible molecules. We also tested for the first time whether SR/CR mice were able to resist additional cancer cell lines prior to S180 exposure. We found that SR/CR mice had an innate resistance against EL-4 and J774.</p> <p>Conclusions</p> <p>Our results suggest that the cancer resistance in SR/CR mice is based on at least two separate processes: leukocyte migration/infiltration to the site of cancer cells and recognition of common surface properties on cancer cells. The infiltration of SR/CR leukocytes was based on both the innate ability of leukocytes to respond to chemotactic signals produced by cancer cells and on whether cancer cells produced these chemotactic signals. We found that some cancer cells could escape from SR/CR resistance because they did not induce infiltration of SR/CR leukocytes. However, if infiltration of leukocytes was induced by co-injection with chemotactic factors, these same cancer cells could be effectively recognized and killed by SR/CR leukocytes.</p>
url http://www.biomedcentral.com/1471-2407/10/179
work_keys_str_mv AT hicksamym thespectrumofresistanceinsrcrmicethecriticalroleofchemoattractioninthecancerleukocyteinteraction
AT sandersannem thespectrumofresistanceinsrcrmicethecriticalroleofchemoattractioninthecancerleukocyteinteraction
AT blanksmichaelj thespectrumofresistanceinsrcrmicethecriticalroleofchemoattractioninthecancerleukocyteinteraction
AT stehlejohnr thespectrumofresistanceinsrcrmicethecriticalroleofchemoattractioninthecancerleukocyteinteraction
AT adamsjonathan thespectrumofresistanceinsrcrmicethecriticalroleofchemoattractioninthecancerleukocyteinteraction
AT riedlingergregory thespectrumofresistanceinsrcrmicethecriticalroleofchemoattractioninthecancerleukocyteinteraction
AT willinghammarkc thespectrumofresistanceinsrcrmicethecriticalroleofchemoattractioninthecancerleukocyteinteraction
AT cuizheng thespectrumofresistanceinsrcrmicethecriticalroleofchemoattractioninthecancerleukocyteinteraction
AT hicksamym spectrumofresistanceinsrcrmicethecriticalroleofchemoattractioninthecancerleukocyteinteraction
AT sandersannem spectrumofresistanceinsrcrmicethecriticalroleofchemoattractioninthecancerleukocyteinteraction
AT blanksmichaelj spectrumofresistanceinsrcrmicethecriticalroleofchemoattractioninthecancerleukocyteinteraction
AT stehlejohnr spectrumofresistanceinsrcrmicethecriticalroleofchemoattractioninthecancerleukocyteinteraction
AT adamsjonathan spectrumofresistanceinsrcrmicethecriticalroleofchemoattractioninthecancerleukocyteinteraction
AT riedlingergregory spectrumofresistanceinsrcrmicethecriticalroleofchemoattractioninthecancerleukocyteinteraction
AT willinghammarkc spectrumofresistanceinsrcrmicethecriticalroleofchemoattractioninthecancerleukocyteinteraction
AT cuizheng spectrumofresistanceinsrcrmicethecriticalroleofchemoattractioninthecancerleukocyteinteraction
_version_ 1724969277358866432