EEG Classification of Motor Imagery Using a Novel Deep Learning Framework
Successful applications of brain-computer interface (BCI) approaches to motor imagery (MI) are still limited. In this paper, we propose a classification framework for MI electroencephalogram (EEG) signals that combines a convolutional neural network (CNN) architecture with a variational autoencoder...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-01-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/19/3/551 |