The Effect of Entropy on the Performance of Modified Genetic Algorithm Using Earthquake and Wind Time Series

The dynamic complexity of time series of natural phenomena allowed to improve the performance of the genetic algorithm to optimize the test mathematical functions. The initial populations of stochastic origin of the genetic algorithm were replaced using the series of time of winds and earthquakes. T...

Full description

Bibliographic Details
Main Authors: Manuel Vargas, Guillermo Fuertes, Miguel Alfaro, Gustavo Gatica, Sebastian Gutierrez, María Peralta
Format: Article
Language:English
Published: Hindawi-Wiley 2018-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2018/4392036
id doaj-3de3203cca9948b3b5d4bc31d68ff6de
record_format Article
spelling doaj-3de3203cca9948b3b5d4bc31d68ff6de2020-11-25T01:00:17ZengHindawi-WileyComplexity1076-27871099-05262018-01-01201810.1155/2018/43920364392036The Effect of Entropy on the Performance of Modified Genetic Algorithm Using Earthquake and Wind Time SeriesManuel Vargas0Guillermo Fuertes1Miguel Alfaro2Gustavo Gatica3Sebastian Gutierrez4María Peralta5Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago de Chile, ChileUniversidad de San Buenaventura, ColombiaIndustrial Engineering Department, University of Santiago de Chile, Avenida Ecuador 3769, Santiago de Chile, ChileFacultad de Ingenieria, Universidad Andres Bello, Antonio Varas 880, Santiago de Chile, ChileFacultad de Economía y Negocios, Universidad Central de Chile, Lord Cochrane 417, Santiago, ChileDepartamento de Enseñanza de las Ciencias Básicas, Universidad Católica del Norte, Larrondo 1281, Coquimbo, ChileThe dynamic complexity of time series of natural phenomena allowed to improve the performance of the genetic algorithm to optimize the test mathematical functions. The initial populations of stochastic origin of the genetic algorithm were replaced using the series of time of winds and earthquakes. The determinism of the time series brings in more information in the search of the global optimum of the functions, achieving reductions of time and an improvement of the results. The information of the initial populations was measured using the entropy of Shannon and allowed to establish the importance of the entropy in the initial populations and its relation with getting better results. This research establishes a new methodology for using determinism time series to search the best performance of the models of optimization of genetic algorithms (GA).http://dx.doi.org/10.1155/2018/4392036
collection DOAJ
language English
format Article
sources DOAJ
author Manuel Vargas
Guillermo Fuertes
Miguel Alfaro
Gustavo Gatica
Sebastian Gutierrez
María Peralta
spellingShingle Manuel Vargas
Guillermo Fuertes
Miguel Alfaro
Gustavo Gatica
Sebastian Gutierrez
María Peralta
The Effect of Entropy on the Performance of Modified Genetic Algorithm Using Earthquake and Wind Time Series
Complexity
author_facet Manuel Vargas
Guillermo Fuertes
Miguel Alfaro
Gustavo Gatica
Sebastian Gutierrez
María Peralta
author_sort Manuel Vargas
title The Effect of Entropy on the Performance of Modified Genetic Algorithm Using Earthquake and Wind Time Series
title_short The Effect of Entropy on the Performance of Modified Genetic Algorithm Using Earthquake and Wind Time Series
title_full The Effect of Entropy on the Performance of Modified Genetic Algorithm Using Earthquake and Wind Time Series
title_fullStr The Effect of Entropy on the Performance of Modified Genetic Algorithm Using Earthquake and Wind Time Series
title_full_unstemmed The Effect of Entropy on the Performance of Modified Genetic Algorithm Using Earthquake and Wind Time Series
title_sort effect of entropy on the performance of modified genetic algorithm using earthquake and wind time series
publisher Hindawi-Wiley
series Complexity
issn 1076-2787
1099-0526
publishDate 2018-01-01
description The dynamic complexity of time series of natural phenomena allowed to improve the performance of the genetic algorithm to optimize the test mathematical functions. The initial populations of stochastic origin of the genetic algorithm were replaced using the series of time of winds and earthquakes. The determinism of the time series brings in more information in the search of the global optimum of the functions, achieving reductions of time and an improvement of the results. The information of the initial populations was measured using the entropy of Shannon and allowed to establish the importance of the entropy in the initial populations and its relation with getting better results. This research establishes a new methodology for using determinism time series to search the best performance of the models of optimization of genetic algorithms (GA).
url http://dx.doi.org/10.1155/2018/4392036
work_keys_str_mv AT manuelvargas theeffectofentropyontheperformanceofmodifiedgeneticalgorithmusingearthquakeandwindtimeseries
AT guillermofuertes theeffectofentropyontheperformanceofmodifiedgeneticalgorithmusingearthquakeandwindtimeseries
AT miguelalfaro theeffectofentropyontheperformanceofmodifiedgeneticalgorithmusingearthquakeandwindtimeseries
AT gustavogatica theeffectofentropyontheperformanceofmodifiedgeneticalgorithmusingearthquakeandwindtimeseries
AT sebastiangutierrez theeffectofentropyontheperformanceofmodifiedgeneticalgorithmusingearthquakeandwindtimeseries
AT mariaperalta theeffectofentropyontheperformanceofmodifiedgeneticalgorithmusingearthquakeandwindtimeseries
AT manuelvargas effectofentropyontheperformanceofmodifiedgeneticalgorithmusingearthquakeandwindtimeseries
AT guillermofuertes effectofentropyontheperformanceofmodifiedgeneticalgorithmusingearthquakeandwindtimeseries
AT miguelalfaro effectofentropyontheperformanceofmodifiedgeneticalgorithmusingearthquakeandwindtimeseries
AT gustavogatica effectofentropyontheperformanceofmodifiedgeneticalgorithmusingearthquakeandwindtimeseries
AT sebastiangutierrez effectofentropyontheperformanceofmodifiedgeneticalgorithmusingearthquakeandwindtimeseries
AT mariaperalta effectofentropyontheperformanceofmodifiedgeneticalgorithmusingearthquakeandwindtimeseries
_version_ 1725214302738055168