Multicast Convolutional Network Codes via Local Encoding Kernels

A convolutional network (CN) code can be described by either global encoding kernels (GEKs) or local encoding kernels (LEKs). In the literature, the multicast property of a CN code is described using GEKs, so the design algorithms for multicast CN codes employ GEKs to check this property. For cyclic...

Full description

Bibliographic Details
Main Authors: Morteza Rekab-Eslami, Morteza Esmaeili, Thomas Aaron Gulliver
Format: Article
Language:English
Published: IEEE 2017-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/7895122/
id doaj-3de0ad2008334051b1a2828a002c130b
record_format Article
spelling doaj-3de0ad2008334051b1a2828a002c130b2021-03-29T20:09:35ZengIEEEIEEE Access2169-35362017-01-0156464647010.1109/ACCESS.2017.26897817895122Multicast Convolutional Network Codes via Local Encoding KernelsMorteza Rekab-Eslami0Morteza Esmaeili1Thomas Aaron Gulliver2https://orcid.org/0000-0001-9919-0323Isfahan University of Technology, Isfahan, IranIsfahan University of Technology, Isfahan, IranUniversity of Victoria, Victoria, BC, CanadaA convolutional network (CN) code can be described by either global encoding kernels (GEKs) or local encoding kernels (LEKs). In the literature, the multicast property of a CN code is described using GEKs, so the design algorithms for multicast CN codes employ GEKs to check this property. For cyclic networks, using GEKs makes the design algorithms time-consuming. In this paper, a new approach is proposed for the design of multicast CN codes for networks with cycles. First, a formula is presented to describe the multicast property using LEKs rather than GEKs. Then, this formula is used to develop a design algorithm for multicast CN codes. This algorithm does not use GEKs, which makes it more efficient than GEK-based algorithms, particularly for large cyclic networks.https://ieeexplore.ieee.org/document/7895122/Cyclic networkmulticastedge-disjoint cyclesflowlocal encoding kernel
collection DOAJ
language English
format Article
sources DOAJ
author Morteza Rekab-Eslami
Morteza Esmaeili
Thomas Aaron Gulliver
spellingShingle Morteza Rekab-Eslami
Morteza Esmaeili
Thomas Aaron Gulliver
Multicast Convolutional Network Codes via Local Encoding Kernels
IEEE Access
Cyclic network
multicast
edge-disjoint cycles
flow
local encoding kernel
author_facet Morteza Rekab-Eslami
Morteza Esmaeili
Thomas Aaron Gulliver
author_sort Morteza Rekab-Eslami
title Multicast Convolutional Network Codes via Local Encoding Kernels
title_short Multicast Convolutional Network Codes via Local Encoding Kernels
title_full Multicast Convolutional Network Codes via Local Encoding Kernels
title_fullStr Multicast Convolutional Network Codes via Local Encoding Kernels
title_full_unstemmed Multicast Convolutional Network Codes via Local Encoding Kernels
title_sort multicast convolutional network codes via local encoding kernels
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2017-01-01
description A convolutional network (CN) code can be described by either global encoding kernels (GEKs) or local encoding kernels (LEKs). In the literature, the multicast property of a CN code is described using GEKs, so the design algorithms for multicast CN codes employ GEKs to check this property. For cyclic networks, using GEKs makes the design algorithms time-consuming. In this paper, a new approach is proposed for the design of multicast CN codes for networks with cycles. First, a formula is presented to describe the multicast property using LEKs rather than GEKs. Then, this formula is used to develop a design algorithm for multicast CN codes. This algorithm does not use GEKs, which makes it more efficient than GEK-based algorithms, particularly for large cyclic networks.
topic Cyclic network
multicast
edge-disjoint cycles
flow
local encoding kernel
url https://ieeexplore.ieee.org/document/7895122/
work_keys_str_mv AT mortezarekabeslami multicastconvolutionalnetworkcodesvialocalencodingkernels
AT mortezaesmaeili multicastconvolutionalnetworkcodesvialocalencodingkernels
AT thomasaarongulliver multicastconvolutionalnetworkcodesvialocalencodingkernels
_version_ 1724195188957511680