A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation

The Derrida-Lebowitz-Speer-Spohn (DLSS) equation is a fourth order in space non-linear evolution equation. This equation arises in the study of interface fluctuations in spin systems and quantum semiconductor modelling. In this paper, we present a positive preserving finite element discrtization fo...

Full description

Bibliographic Details
Main Authors: Jorge Mauricio Ruiz Vera, Ignacio Mantilla Prada
Format: Article
Language:English
Published: Universidad EAFIT 2013-03-01
Series:Ingeniería y Ciencia
Subjects:
Online Access:http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1737
id doaj-3dd2d5ffd3b34aedaa1253a73dec9564
record_format Article
spelling doaj-3dd2d5ffd3b34aedaa1253a73dec95642020-11-24T21:12:13ZengUniversidad EAFITIngeniería y Ciencia1794-91652256-43142013-03-0191710.17230/ingciecia.9.17.51737A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equationJorge Mauricio Ruiz Vera0Ignacio Mantilla Prada1Departamento de Matemáticas Universidad Nacional de ColombiaDepartamento de Matemáticas Universidad Nacional de Colombia The Derrida-Lebowitz-Speer-Spohn (DLSS) equation is a fourth order in space non-linear evolution equation. This equation arises in the study of interface fluctuations in spin systems and quantum semiconductor modelling. In this paper, we present a positive preserving finite element discrtization for a coupled-equation approach to the DLSS equation. Using the available information about the physical phenomena, we are able to set the corresponding boundary conditions for the coupled system. We prove existence of a global in time discrete solution by fixed point argument. Numerical results illustrate the quantum character of the equation. Finally a test of order of convergence of the proposed discretization scheme is presented. MSC: 35G25, 65M60, 82D37 http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1737Finite elementsNonlinear evolution equationsSemiconductors
collection DOAJ
language English
format Article
sources DOAJ
author Jorge Mauricio Ruiz Vera
Ignacio Mantilla Prada
spellingShingle Jorge Mauricio Ruiz Vera
Ignacio Mantilla Prada
A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation
Ingeniería y Ciencia
Finite elements
Nonlinear evolution equations
Semiconductors
author_facet Jorge Mauricio Ruiz Vera
Ignacio Mantilla Prada
author_sort Jorge Mauricio Ruiz Vera
title A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation
title_short A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation
title_full A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation
title_fullStr A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation
title_full_unstemmed A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation
title_sort fully discrete finite element scheme for the derrida-lebowitz-speer-spohn equation
publisher Universidad EAFIT
series Ingeniería y Ciencia
issn 1794-9165
2256-4314
publishDate 2013-03-01
description The Derrida-Lebowitz-Speer-Spohn (DLSS) equation is a fourth order in space non-linear evolution equation. This equation arises in the study of interface fluctuations in spin systems and quantum semiconductor modelling. In this paper, we present a positive preserving finite element discrtization for a coupled-equation approach to the DLSS equation. Using the available information about the physical phenomena, we are able to set the corresponding boundary conditions for the coupled system. We prove existence of a global in time discrete solution by fixed point argument. Numerical results illustrate the quantum character of the equation. Finally a test of order of convergence of the proposed discretization scheme is presented. MSC: 35G25, 65M60, 82D37
topic Finite elements
Nonlinear evolution equations
Semiconductors
url http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1737
work_keys_str_mv AT jorgemauricioruizvera afullydiscretefiniteelementschemeforthederridalebowitzspeerspohnequation
AT ignaciomantillaprada afullydiscretefiniteelementschemeforthederridalebowitzspeerspohnequation
AT jorgemauricioruizvera fullydiscretefiniteelementschemeforthederridalebowitzspeerspohnequation
AT ignaciomantillaprada fullydiscretefiniteelementschemeforthederridalebowitzspeerspohnequation
_version_ 1716751196999385088