A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation
The Derrida-Lebowitz-Speer-Spohn (DLSS) equation is a fourth order in space non-linear evolution equation. This equation arises in the study of interface fluctuations in spin systems and quantum semiconductor modelling. In this paper, we present a positive preserving finite element discrtization fo...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidad EAFIT
2013-03-01
|
Series: | Ingeniería y Ciencia |
Subjects: | |
Online Access: | http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1737 |
id |
doaj-3dd2d5ffd3b34aedaa1253a73dec9564 |
---|---|
record_format |
Article |
spelling |
doaj-3dd2d5ffd3b34aedaa1253a73dec95642020-11-24T21:12:13ZengUniversidad EAFITIngeniería y Ciencia1794-91652256-43142013-03-0191710.17230/ingciecia.9.17.51737A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equationJorge Mauricio Ruiz Vera0Ignacio Mantilla Prada1Departamento de Matemáticas Universidad Nacional de ColombiaDepartamento de Matemáticas Universidad Nacional de Colombia The Derrida-Lebowitz-Speer-Spohn (DLSS) equation is a fourth order in space non-linear evolution equation. This equation arises in the study of interface fluctuations in spin systems and quantum semiconductor modelling. In this paper, we present a positive preserving finite element discrtization for a coupled-equation approach to the DLSS equation. Using the available information about the physical phenomena, we are able to set the corresponding boundary conditions for the coupled system. We prove existence of a global in time discrete solution by fixed point argument. Numerical results illustrate the quantum character of the equation. Finally a test of order of convergence of the proposed discretization scheme is presented. MSC: 35G25, 65M60, 82D37 http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1737Finite elementsNonlinear evolution equationsSemiconductors |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jorge Mauricio Ruiz Vera Ignacio Mantilla Prada |
spellingShingle |
Jorge Mauricio Ruiz Vera Ignacio Mantilla Prada A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation Ingeniería y Ciencia Finite elements Nonlinear evolution equations Semiconductors |
author_facet |
Jorge Mauricio Ruiz Vera Ignacio Mantilla Prada |
author_sort |
Jorge Mauricio Ruiz Vera |
title |
A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation |
title_short |
A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation |
title_full |
A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation |
title_fullStr |
A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation |
title_full_unstemmed |
A fully discrete finite element scheme for the Derrida-Lebowitz-Speer-Spohn equation |
title_sort |
fully discrete finite element scheme for the derrida-lebowitz-speer-spohn equation |
publisher |
Universidad EAFIT |
series |
Ingeniería y Ciencia |
issn |
1794-9165 2256-4314 |
publishDate |
2013-03-01 |
description |
The Derrida-Lebowitz-Speer-Spohn (DLSS) equation is a fourth order in space non-linear evolution equation. This equation arises in the study of interface fluctuations in spin systems and quantum semiconductor modelling. In this paper, we present a positive preserving finite element discrtization for a coupled-equation approach to the DLSS equation. Using the available information about the physical phenomena, we are able to set the corresponding boundary conditions for the coupled system. We prove existence of a global in time discrete solution by fixed point argument. Numerical results illustrate the quantum character of the equation. Finally a test of order of convergence of the proposed discretization scheme is presented.
MSC: 35G25, 65M60, 82D37
|
topic |
Finite elements Nonlinear evolution equations Semiconductors |
url |
http://publicaciones.eafit.edu.co/index.php/ingciencia/article/view/1737 |
work_keys_str_mv |
AT jorgemauricioruizvera afullydiscretefiniteelementschemeforthederridalebowitzspeerspohnequation AT ignaciomantillaprada afullydiscretefiniteelementschemeforthederridalebowitzspeerspohnequation AT jorgemauricioruizvera fullydiscretefiniteelementschemeforthederridalebowitzspeerspohnequation AT ignaciomantillaprada fullydiscretefiniteelementschemeforthederridalebowitzspeerspohnequation |
_version_ |
1716751196999385088 |