Slope stability analysis in the case of probabilistic and semi-probabilistic design method

This paper addresses the issue of probabilistic and semi-probabilistic modelling of soil slopes. A slope made of cohesive-frictional soil of specific geometry was analysed as an example. Results were calculated for two methods using the Z-Soil finite element software. It has been assumed that the pr...

Full description

Bibliographic Details
Main Author: Szabowicz Hubert
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:E3S Web of Conferences
Online Access:https://www.e3s-conferences.org/articles/e3sconf/pdf/2019/23/e3sconf_form2018_04044.pdf
Description
Summary:This paper addresses the issue of probabilistic and semi-probabilistic modelling of soil slopes. A slope made of cohesive-frictional soil of specific geometry was analysed as an example. Results were calculated for two methods using the Z-Soil finite element software. It has been assumed that the probability distributions of strength parameters, cohesion and internal friction angle are normal distributions with average values and coefficient of variation = 0.2. Random finite element method (RFEM) has been used for probabilistic modelling. Random fields of cohesion and internal friction angle have been generated using the Fourier series method (FSM). Monte Carlo simulation has been used to calculate the statistics of the slope factor of safety in order to determine the probability of failure. Moreover, assumed parameter distributions allowed to determine safe characteristic values used in the semi-probabilistic partial factors method. Both approaches have been compared in the article.
ISSN:2267-1242