Vibrational Energy Flow Model for a High Damping Beam with Constant Axial Force
The energy flow analysis (EFA) method is developed to predict the energy density of a high damping beam with constant axial force in the high-frequency range. The energy density and intensity of the beam are associated with high structural damping loss factor and axial force and introduced to derive...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2020/3584048 |
Summary: | The energy flow analysis (EFA) method is developed to predict the energy density of a high damping beam with constant axial force in the high-frequency range. The energy density and intensity of the beam are associated with high structural damping loss factor and axial force and introduced to derive the energy transmission equation. For high damping situation, the energy loss equation is derived by considering the relationship between potential energy and total energy. Then, the energy density governing equation is obtained. Finally, the feasibility of the EFA approach is validated by comparing the EFA results with the modal solutions for various frequencies and structural damping loss factors. The effects of structural damping loss factor and axial force on the energy density distribution are also discussed in detail. |
---|---|
ISSN: | 1024-123X 1563-5147 |