The Second Hankel Determinant Problem for a Class of Bi-Close-to-Convex Functions
The purpose of the present work is to determine a bound for the functional <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>2</mn>...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-10-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/7/10/986 |
Summary: | The purpose of the present work is to determine a bound for the functional <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>H</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>a</mi> <mn>4</mn> </msub> <mo>−</mo> <msubsup> <mi>a</mi> <mrow> <mn>3</mn> </mrow> <mn>2</mn> </msubsup> </mrow> </semantics> </math> </inline-formula> for functions belonging to the class <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="script">C</mi> <mo>Σ</mo> </msub> </semantics> </math> </inline-formula> of bi-close-to-convex functions. The main result presented here provides much improved estimation compared with the previous result by means of different proof methods than those used by others. |
---|---|
ISSN: | 2227-7390 |