Experimental Observation of Modulational Instability in Crossing Surface Gravity Wavetrains

The coupled nonlinear Schrödinger equation (CNLSE) is a wave envelope evolution equation applicable to two crossing, narrow-banded wave systems. Modulational instability (MI), a feature of the nonlinear Schrödinger wave equation, is characterized (to first order) by an exponential...

Full description

Bibliographic Details
Main Authors: James N. Steer, Mark L. McAllister, Alistair G. L. Borthwick, Ton S. van den Bremer
Format: Article
Language:English
Published: MDPI AG 2019-06-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/4/2/105
id doaj-3d5e2c6a3e174846a961294ea64bcbb6
record_format Article
spelling doaj-3d5e2c6a3e174846a961294ea64bcbb62020-11-24T21:54:18ZengMDPI AGFluids2311-55212019-06-014210510.3390/fluids4020105fluids4020105Experimental Observation of Modulational Instability in Crossing Surface Gravity WavetrainsJames N. Steer0Mark L. McAllister1Alistair G. L. Borthwick2Ton S. van den Bremer3School of Engineering, The University of Edinburgh, King’s Buildings, Edinburgh EH9 3DW, UKDepartment of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UKSchool of Engineering, The University of Edinburgh, King’s Buildings, Edinburgh EH9 3DW, UKDepartment of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UKThe coupled nonlinear Schr&#246;dinger equation (CNLSE) is a wave envelope evolution equation applicable to two crossing, narrow-banded wave systems. Modulational instability (MI), a feature of the nonlinear Schr&#246;dinger wave equation, is characterized (to first order) by an exponential growth of sideband components and the formation of distinct wave pulses, often containing extreme waves. Linear stability analysis of the CNLSE shows the effect of crossing angle, <inline-formula> <math display="inline"> <semantics> <mi>&#952;</mi> </semantics> </math> </inline-formula>, on MI, and reveals instabilities between <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>&lt;</mo> <mi>&#952;</mi> <mo>&lt;</mo> <msup> <mn>35</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mn>46</mn> <mo>∘</mo> </msup> <mo>&lt;</mo> <mi>&#952;</mi> <mo>&lt;</mo> <msup> <mn>143</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mn>145</mn> <mo>∘</mo> </msup> <mo>&lt;</mo> <mi>&#952;</mi> <mo>&lt;</mo> <msup> <mn>180</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>. Herein, the modulational stability of crossing wavetrains seeded with symmetrical sidebands is determined experimentally from tests in a circular wave basin. Experiments were carried out at 12 crossing angles between <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>&#8804;</mo> <mi>&#952;</mi> <mo>&#8804;</mo> <msup> <mn>88</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>, and strong unidirectional sideband growth was observed. This growth reduced significantly at angles beyond <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#952;</mi> <mo>&#8776;</mo> <msup> <mn>20</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>, reaching complete stability at <inline-formula> <math display="inline"> <semantics> <mi>&#952;</mi> </semantics> </math> </inline-formula> = 30&#8722;40<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>. We find satisfactory agreement between numerical predictions (using a time-marching CNLSE solver) and experimental measurements for all crossing angles.https://www.mdpi.com/2311-5521/4/2/105surface wavescrossing seasmodulational/Benjamin-Feir instabilitycoupled nonlinear Schrödinger equation (CNLSE)experiments
collection DOAJ
language English
format Article
sources DOAJ
author James N. Steer
Mark L. McAllister
Alistair G. L. Borthwick
Ton S. van den Bremer
spellingShingle James N. Steer
Mark L. McAllister
Alistair G. L. Borthwick
Ton S. van den Bremer
Experimental Observation of Modulational Instability in Crossing Surface Gravity Wavetrains
Fluids
surface waves
crossing seas
modulational/Benjamin-Feir instability
coupled nonlinear Schrödinger equation (CNLSE)
experiments
author_facet James N. Steer
Mark L. McAllister
Alistair G. L. Borthwick
Ton S. van den Bremer
author_sort James N. Steer
title Experimental Observation of Modulational Instability in Crossing Surface Gravity Wavetrains
title_short Experimental Observation of Modulational Instability in Crossing Surface Gravity Wavetrains
title_full Experimental Observation of Modulational Instability in Crossing Surface Gravity Wavetrains
title_fullStr Experimental Observation of Modulational Instability in Crossing Surface Gravity Wavetrains
title_full_unstemmed Experimental Observation of Modulational Instability in Crossing Surface Gravity Wavetrains
title_sort experimental observation of modulational instability in crossing surface gravity wavetrains
publisher MDPI AG
series Fluids
issn 2311-5521
publishDate 2019-06-01
description The coupled nonlinear Schr&#246;dinger equation (CNLSE) is a wave envelope evolution equation applicable to two crossing, narrow-banded wave systems. Modulational instability (MI), a feature of the nonlinear Schr&#246;dinger wave equation, is characterized (to first order) by an exponential growth of sideband components and the formation of distinct wave pulses, often containing extreme waves. Linear stability analysis of the CNLSE shows the effect of crossing angle, <inline-formula> <math display="inline"> <semantics> <mi>&#952;</mi> </semantics> </math> </inline-formula>, on MI, and reveals instabilities between <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>&lt;</mo> <mi>&#952;</mi> <mo>&lt;</mo> <msup> <mn>35</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mn>46</mn> <mo>∘</mo> </msup> <mo>&lt;</mo> <mi>&#952;</mi> <mo>&lt;</mo> <msup> <mn>143</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mn>145</mn> <mo>∘</mo> </msup> <mo>&lt;</mo> <mi>&#952;</mi> <mo>&lt;</mo> <msup> <mn>180</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>. Herein, the modulational stability of crossing wavetrains seeded with symmetrical sidebands is determined experimentally from tests in a circular wave basin. Experiments were carried out at 12 crossing angles between <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>&#8804;</mo> <mi>&#952;</mi> <mo>&#8804;</mo> <msup> <mn>88</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>, and strong unidirectional sideband growth was observed. This growth reduced significantly at angles beyond <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#952;</mi> <mo>&#8776;</mo> <msup> <mn>20</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>, reaching complete stability at <inline-formula> <math display="inline"> <semantics> <mi>&#952;</mi> </semantics> </math> </inline-formula> = 30&#8722;40<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>. We find satisfactory agreement between numerical predictions (using a time-marching CNLSE solver) and experimental measurements for all crossing angles.
topic surface waves
crossing seas
modulational/Benjamin-Feir instability
coupled nonlinear Schrödinger equation (CNLSE)
experiments
url https://www.mdpi.com/2311-5521/4/2/105
work_keys_str_mv AT jamesnsteer experimentalobservationofmodulationalinstabilityincrossingsurfacegravitywavetrains
AT marklmcallister experimentalobservationofmodulationalinstabilityincrossingsurfacegravitywavetrains
AT alistairglborthwick experimentalobservationofmodulationalinstabilityincrossingsurfacegravitywavetrains
AT tonsvandenbremer experimentalobservationofmodulationalinstabilityincrossingsurfacegravitywavetrains
_version_ 1725867810981150720