Experimental Observation of Modulational Instability in Crossing Surface Gravity Wavetrains
The coupled nonlinear Schrödinger equation (CNLSE) is a wave envelope evolution equation applicable to two crossing, narrow-banded wave systems. Modulational instability (MI), a feature of the nonlinear Schrödinger wave equation, is characterized (to first order) by an exponential...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-06-01
|
Series: | Fluids |
Subjects: | |
Online Access: | https://www.mdpi.com/2311-5521/4/2/105 |
id |
doaj-3d5e2c6a3e174846a961294ea64bcbb6 |
---|---|
record_format |
Article |
spelling |
doaj-3d5e2c6a3e174846a961294ea64bcbb62020-11-24T21:54:18ZengMDPI AGFluids2311-55212019-06-014210510.3390/fluids4020105fluids4020105Experimental Observation of Modulational Instability in Crossing Surface Gravity WavetrainsJames N. Steer0Mark L. McAllister1Alistair G. L. Borthwick2Ton S. van den Bremer3School of Engineering, The University of Edinburgh, King’s Buildings, Edinburgh EH9 3DW, UKDepartment of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UKSchool of Engineering, The University of Edinburgh, King’s Buildings, Edinburgh EH9 3DW, UKDepartment of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UKThe coupled nonlinear Schrödinger equation (CNLSE) is a wave envelope evolution equation applicable to two crossing, narrow-banded wave systems. Modulational instability (MI), a feature of the nonlinear Schrödinger wave equation, is characterized (to first order) by an exponential growth of sideband components and the formation of distinct wave pulses, often containing extreme waves. Linear stability analysis of the CNLSE shows the effect of crossing angle, <inline-formula> <math display="inline"> <semantics> <mi>θ</mi> </semantics> </math> </inline-formula>, on MI, and reveals instabilities between <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo><</mo> <mi>θ</mi> <mo><</mo> <msup> <mn>35</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mn>46</mn> <mo>∘</mo> </msup> <mo><</mo> <mi>θ</mi> <mo><</mo> <msup> <mn>143</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mn>145</mn> <mo>∘</mo> </msup> <mo><</mo> <mi>θ</mi> <mo><</mo> <msup> <mn>180</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>. Herein, the modulational stability of crossing wavetrains seeded with symmetrical sidebands is determined experimentally from tests in a circular wave basin. Experiments were carried out at 12 crossing angles between <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>≤</mo> <mi>θ</mi> <mo>≤</mo> <msup> <mn>88</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>, and strong unidirectional sideband growth was observed. This growth reduced significantly at angles beyond <inline-formula> <math display="inline"> <semantics> <mrow> <mi>θ</mi> <mo>≈</mo> <msup> <mn>20</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>, reaching complete stability at <inline-formula> <math display="inline"> <semantics> <mi>θ</mi> </semantics> </math> </inline-formula> = 30−40<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>. We find satisfactory agreement between numerical predictions (using a time-marching CNLSE solver) and experimental measurements for all crossing angles.https://www.mdpi.com/2311-5521/4/2/105surface wavescrossing seasmodulational/Benjamin-Feir instabilitycoupled nonlinear Schrödinger equation (CNLSE)experiments |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
James N. Steer Mark L. McAllister Alistair G. L. Borthwick Ton S. van den Bremer |
spellingShingle |
James N. Steer Mark L. McAllister Alistair G. L. Borthwick Ton S. van den Bremer Experimental Observation of Modulational Instability in Crossing Surface Gravity Wavetrains Fluids surface waves crossing seas modulational/Benjamin-Feir instability coupled nonlinear Schrödinger equation (CNLSE) experiments |
author_facet |
James N. Steer Mark L. McAllister Alistair G. L. Borthwick Ton S. van den Bremer |
author_sort |
James N. Steer |
title |
Experimental Observation of Modulational Instability in Crossing Surface Gravity Wavetrains |
title_short |
Experimental Observation of Modulational Instability in Crossing Surface Gravity Wavetrains |
title_full |
Experimental Observation of Modulational Instability in Crossing Surface Gravity Wavetrains |
title_fullStr |
Experimental Observation of Modulational Instability in Crossing Surface Gravity Wavetrains |
title_full_unstemmed |
Experimental Observation of Modulational Instability in Crossing Surface Gravity Wavetrains |
title_sort |
experimental observation of modulational instability in crossing surface gravity wavetrains |
publisher |
MDPI AG |
series |
Fluids |
issn |
2311-5521 |
publishDate |
2019-06-01 |
description |
The coupled nonlinear Schrödinger equation (CNLSE) is a wave envelope evolution equation applicable to two crossing, narrow-banded wave systems. Modulational instability (MI), a feature of the nonlinear Schrödinger wave equation, is characterized (to first order) by an exponential growth of sideband components and the formation of distinct wave pulses, often containing extreme waves. Linear stability analysis of the CNLSE shows the effect of crossing angle, <inline-formula> <math display="inline"> <semantics> <mi>θ</mi> </semantics> </math> </inline-formula>, on MI, and reveals instabilities between <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo><</mo> <mi>θ</mi> <mo><</mo> <msup> <mn>35</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mn>46</mn> <mo>∘</mo> </msup> <mo><</mo> <mi>θ</mi> <mo><</mo> <msup> <mn>143</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>, and <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mn>145</mn> <mo>∘</mo> </msup> <mo><</mo> <mi>θ</mi> <mo><</mo> <msup> <mn>180</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>. Herein, the modulational stability of crossing wavetrains seeded with symmetrical sidebands is determined experimentally from tests in a circular wave basin. Experiments were carried out at 12 crossing angles between <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mn>0</mn> <mo>∘</mo> </msup> <mo>≤</mo> <mi>θ</mi> <mo>≤</mo> <msup> <mn>88</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>, and strong unidirectional sideband growth was observed. This growth reduced significantly at angles beyond <inline-formula> <math display="inline"> <semantics> <mrow> <mi>θ</mi> <mo>≈</mo> <msup> <mn>20</mn> <mo>∘</mo> </msup> </mrow> </semantics> </math> </inline-formula>, reaching complete stability at <inline-formula> <math display="inline"> <semantics> <mi>θ</mi> </semantics> </math> </inline-formula> = 30−40<inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>. We find satisfactory agreement between numerical predictions (using a time-marching CNLSE solver) and experimental measurements for all crossing angles. |
topic |
surface waves crossing seas modulational/Benjamin-Feir instability coupled nonlinear Schrödinger equation (CNLSE) experiments |
url |
https://www.mdpi.com/2311-5521/4/2/105 |
work_keys_str_mv |
AT jamesnsteer experimentalobservationofmodulationalinstabilityincrossingsurfacegravitywavetrains AT marklmcallister experimentalobservationofmodulationalinstabilityincrossingsurfacegravitywavetrains AT alistairglborthwick experimentalobservationofmodulationalinstabilityincrossingsurfacegravitywavetrains AT tonsvandenbremer experimentalobservationofmodulationalinstabilityincrossingsurfacegravitywavetrains |
_version_ |
1725867810981150720 |