Self-Heating Ability of Geopolymers Enhanced by Carbon Black Admixtures at Different Voltage Loads

Sustainable development in the construction industry can be achieved by the design of multifunctional materials with good mechanical properties, durability, and reasonable environmental impacts. New functional properties, such as self-sensing, self-heating, or energy harvesting, are crucially depend...

Full description

Bibliographic Details
Main Authors: Lukáš Fiala, Michaela Petříková, Wei-Ting Lin, Luboš Podolka, Robert Černý
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/21/4121
Description
Summary:Sustainable development in the construction industry can be achieved by the design of multifunctional materials with good mechanical properties, durability, and reasonable environmental impacts. New functional properties, such as self-sensing, self-heating, or energy harvesting, are crucially dependent on electrical properties, which are very poor for common building materials. Therefore, various electrically conductive admixtures are used to enhance their electrical properties. Geopolymers based on waste or byproduct precursors are promising materials that can gain new functional properties by adding a reasonable amount of electrically conductive admixtures. The main aim of this paper lies in the design of multifunctional geopolymers with self-heating abilities. Designed geopolymer mortars based on blast-furnace slag activated by water glass and 6 dosages of carbon black (CB) admixture up to 2.25 wt. % were studied in terms of basic physical, mechanical, thermal, and electrical properties (DC). The self-heating ability of the designed mortars was experimentally determined at 40 and 100 V loads. The percolation threshold for self-heating was observed at 1.5 wt. % of carbon black with an increasing self-heating performance for higher CB dosages. The highest power of 26 W and the highest temperature increase of about 110 °C were observed for geopolymers with 2.25 wt. % of carbon black admixture at 100 V.
ISSN:1996-1073