E3L and F1L Gene Functions Modulate the Protective Capacity of Modified Vaccinia Virus Ankara Immunization in Murine Model of Human Smallpox

The highly attenuated Modified Vaccinia virus Ankara (MVA) lacks most of the known vaccinia virus (VACV) virulence and immune evasion genes. Today MVA can serve as a safety-tested next-generation smallpox vaccine. Yet, we still need to learn about regulatory gene functions preserved in the MVA genom...

Full description

Bibliographic Details
Main Authors: Asisa Volz, Sylvia Jany, Astrid Freudenstein, Markus Lantermann, Holger Ludwig, Gerd Sutter
Format: Article
Language:English
Published: MDPI AG 2018-01-01
Series:Viruses
Subjects:
MVA
Online Access:http://www.mdpi.com/1999-4915/10/1/21
id doaj-3d42926771e947038926380bd2f119fd
record_format Article
spelling doaj-3d42926771e947038926380bd2f119fd2020-11-24T23:47:24ZengMDPI AGViruses1999-49152018-01-011012110.3390/v10010021v10010021E3L and F1L Gene Functions Modulate the Protective Capacity of Modified Vaccinia Virus Ankara Immunization in Murine Model of Human SmallpoxAsisa Volz0Sylvia Jany1Astrid Freudenstein2Markus Lantermann3Holger Ludwig4Gerd Sutter5Lehrstuhl für Virologie, Institut für Infektionsmedizin und Zoonosen, Ludwig-Maximilians-Universität München, 80539 Munich, GermanyLehrstuhl für Virologie, Institut für Infektionsmedizin und Zoonosen, Ludwig-Maximilians-Universität München, 80539 Munich, GermanyLehrstuhl für Virologie, Institut für Infektionsmedizin und Zoonosen, Ludwig-Maximilians-Universität München, 80539 Munich, GermanyDivision of Virology, Paul-Ehrlich-Institut, 63225 Langen, GermanyDivision of Virology, Paul-Ehrlich-Institut, 63225 Langen, GermanyLehrstuhl für Virologie, Institut für Infektionsmedizin und Zoonosen, Ludwig-Maximilians-Universität München, 80539 Munich, GermanyThe highly attenuated Modified Vaccinia virus Ankara (MVA) lacks most of the known vaccinia virus (VACV) virulence and immune evasion genes. Today MVA can serve as a safety-tested next-generation smallpox vaccine. Yet, we still need to learn about regulatory gene functions preserved in the MVA genome, such as the apoptosis inhibitor genes F1L and E3L. Here, we tested MVA vaccine preparations on the basis of the deletion mutant viruses MVA-ΔF1L and MVA-ΔE3L for efficacy against ectromelia virus (ECTV) challenge infections in mice. In non-permissive human tissue culture the MVA deletion mutant viruses produced reduced levels of the VACV envelope antigen B5. Upon mousepox challenge at three weeks after vaccination, MVA-ΔF1L and MVA-ΔE3L exhibited reduced protective capacity in comparison to wildtype MVA. Surprisingly, however, all vaccines proved equally protective against a lethal ECTV infection at two days after vaccination. Accordingly, the deletion mutant MVA vaccines induced high levels of virus-specific CD8+ T cells previously shown to be essential for rapidly protective MVA vaccination. These results suggest that inactivation of the anti-apoptotic genes F1L or E3L modulates the protective capacity of MVA vaccination most likely through the induction of distinct orthopoxvirus specific immunity in the absence of these viral regulatory proteins.http://www.mdpi.com/1999-4915/10/1/21smallpox vaccinationMVAimmunogenic cell deathemergency vaccination
collection DOAJ
language English
format Article
sources DOAJ
author Asisa Volz
Sylvia Jany
Astrid Freudenstein
Markus Lantermann
Holger Ludwig
Gerd Sutter
spellingShingle Asisa Volz
Sylvia Jany
Astrid Freudenstein
Markus Lantermann
Holger Ludwig
Gerd Sutter
E3L and F1L Gene Functions Modulate the Protective Capacity of Modified Vaccinia Virus Ankara Immunization in Murine Model of Human Smallpox
Viruses
smallpox vaccination
MVA
immunogenic cell death
emergency vaccination
author_facet Asisa Volz
Sylvia Jany
Astrid Freudenstein
Markus Lantermann
Holger Ludwig
Gerd Sutter
author_sort Asisa Volz
title E3L and F1L Gene Functions Modulate the Protective Capacity of Modified Vaccinia Virus Ankara Immunization in Murine Model of Human Smallpox
title_short E3L and F1L Gene Functions Modulate the Protective Capacity of Modified Vaccinia Virus Ankara Immunization in Murine Model of Human Smallpox
title_full E3L and F1L Gene Functions Modulate the Protective Capacity of Modified Vaccinia Virus Ankara Immunization in Murine Model of Human Smallpox
title_fullStr E3L and F1L Gene Functions Modulate the Protective Capacity of Modified Vaccinia Virus Ankara Immunization in Murine Model of Human Smallpox
title_full_unstemmed E3L and F1L Gene Functions Modulate the Protective Capacity of Modified Vaccinia Virus Ankara Immunization in Murine Model of Human Smallpox
title_sort e3l and f1l gene functions modulate the protective capacity of modified vaccinia virus ankara immunization in murine model of human smallpox
publisher MDPI AG
series Viruses
issn 1999-4915
publishDate 2018-01-01
description The highly attenuated Modified Vaccinia virus Ankara (MVA) lacks most of the known vaccinia virus (VACV) virulence and immune evasion genes. Today MVA can serve as a safety-tested next-generation smallpox vaccine. Yet, we still need to learn about regulatory gene functions preserved in the MVA genome, such as the apoptosis inhibitor genes F1L and E3L. Here, we tested MVA vaccine preparations on the basis of the deletion mutant viruses MVA-ΔF1L and MVA-ΔE3L for efficacy against ectromelia virus (ECTV) challenge infections in mice. In non-permissive human tissue culture the MVA deletion mutant viruses produced reduced levels of the VACV envelope antigen B5. Upon mousepox challenge at three weeks after vaccination, MVA-ΔF1L and MVA-ΔE3L exhibited reduced protective capacity in comparison to wildtype MVA. Surprisingly, however, all vaccines proved equally protective against a lethal ECTV infection at two days after vaccination. Accordingly, the deletion mutant MVA vaccines induced high levels of virus-specific CD8+ T cells previously shown to be essential for rapidly protective MVA vaccination. These results suggest that inactivation of the anti-apoptotic genes F1L or E3L modulates the protective capacity of MVA vaccination most likely through the induction of distinct orthopoxvirus specific immunity in the absence of these viral regulatory proteins.
topic smallpox vaccination
MVA
immunogenic cell death
emergency vaccination
url http://www.mdpi.com/1999-4915/10/1/21
work_keys_str_mv AT asisavolz e3landf1lgenefunctionsmodulatetheprotectivecapacityofmodifiedvacciniavirusankaraimmunizationinmurinemodelofhumansmallpox
AT sylviajany e3landf1lgenefunctionsmodulatetheprotectivecapacityofmodifiedvacciniavirusankaraimmunizationinmurinemodelofhumansmallpox
AT astridfreudenstein e3landf1lgenefunctionsmodulatetheprotectivecapacityofmodifiedvacciniavirusankaraimmunizationinmurinemodelofhumansmallpox
AT markuslantermann e3landf1lgenefunctionsmodulatetheprotectivecapacityofmodifiedvacciniavirusankaraimmunizationinmurinemodelofhumansmallpox
AT holgerludwig e3landf1lgenefunctionsmodulatetheprotectivecapacityofmodifiedvacciniavirusankaraimmunizationinmurinemodelofhumansmallpox
AT gerdsutter e3landf1lgenefunctionsmodulatetheprotectivecapacityofmodifiedvacciniavirusankaraimmunizationinmurinemodelofhumansmallpox
_version_ 1725489866780704768