MINIMAL LEARNING MACHINE IN ANOMALY DETECTION FROM HYPERSPECTRAL IMAGES
Anomaly detection from hyperspectral data needs computationally efficient methods to process the data when the data gathering platform is a drone or a cube satellite. In this study, we introduce a minimal learning machine for hyperspectral anomaly detection. Minimal learning machine is a novel dista...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-08-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/467/2020/isprs-archives-XLIII-B3-2020-467-2020.pdf |
id |
doaj-3d3b25f540d64d27a93c20a5c79e172c |
---|---|
record_format |
Article |
spelling |
doaj-3d3b25f540d64d27a93c20a5c79e172c2020-11-25T03:45:19ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342020-08-01XLIII-B3-202046747210.5194/isprs-archives-XLIII-B3-2020-467-2020MINIMAL LEARNING MACHINE IN ANOMALY DETECTION FROM HYPERSPECTRAL IMAGESI. Pölönen0K. Riihiaho1A.-M. Hakola2L. Annala3Faculty of Information Technology, University of Jyväskylä, 40100, Jyväskylä, FinlandFaculty of Information Technology, University of Jyväskylä, 40100, Jyväskylä, FinlandFaculty of Information Technology, University of Jyväskylä, 40100, Jyväskylä, FinlandFaculty of Information Technology, University of Jyväskylä, 40100, Jyväskylä, FinlandAnomaly detection from hyperspectral data needs computationally efficient methods to process the data when the data gathering platform is a drone or a cube satellite. In this study, we introduce a minimal learning machine for hyperspectral anomaly detection. Minimal learning machine is a novel distance-based classification algorithm, which is now modified to detect anomalies. Besides being computationally efficient, minimal learning machine is also easy to implement. Based on the results, we show that minimal learning machine is efficient in detecting global anomalies from the hyperspectral data with low false alarm rate.https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/467/2020/isprs-archives-XLIII-B3-2020-467-2020.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
I. Pölönen K. Riihiaho A.-M. Hakola L. Annala |
spellingShingle |
I. Pölönen K. Riihiaho A.-M. Hakola L. Annala MINIMAL LEARNING MACHINE IN ANOMALY DETECTION FROM HYPERSPECTRAL IMAGES The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
author_facet |
I. Pölönen K. Riihiaho A.-M. Hakola L. Annala |
author_sort |
I. Pölönen |
title |
MINIMAL LEARNING MACHINE IN ANOMALY DETECTION FROM HYPERSPECTRAL IMAGES |
title_short |
MINIMAL LEARNING MACHINE IN ANOMALY DETECTION FROM HYPERSPECTRAL IMAGES |
title_full |
MINIMAL LEARNING MACHINE IN ANOMALY DETECTION FROM HYPERSPECTRAL IMAGES |
title_fullStr |
MINIMAL LEARNING MACHINE IN ANOMALY DETECTION FROM HYPERSPECTRAL IMAGES |
title_full_unstemmed |
MINIMAL LEARNING MACHINE IN ANOMALY DETECTION FROM HYPERSPECTRAL IMAGES |
title_sort |
minimal learning machine in anomaly detection from hyperspectral images |
publisher |
Copernicus Publications |
series |
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
issn |
1682-1750 2194-9034 |
publishDate |
2020-08-01 |
description |
Anomaly detection from hyperspectral data needs computationally efficient methods to process the data when the data gathering platform is a drone or a cube satellite. In this study, we introduce a minimal learning machine for hyperspectral anomaly detection. Minimal learning machine is a novel distance-based classification algorithm, which is now modified to detect anomalies. Besides being computationally efficient, minimal learning machine is also easy to implement. Based on the results, we show that minimal learning machine is efficient in detecting global anomalies from the hyperspectral data with low false alarm rate. |
url |
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/467/2020/isprs-archives-XLIII-B3-2020-467-2020.pdf |
work_keys_str_mv |
AT ipolonen minimallearningmachineinanomalydetectionfromhyperspectralimages AT kriihiaho minimallearningmachineinanomalydetectionfromhyperspectralimages AT amhakola minimallearningmachineinanomalydetectionfromhyperspectralimages AT lannala minimallearningmachineinanomalydetectionfromhyperspectralimages |
_version_ |
1724510178370387968 |