Moistube irrigation (MTI) discharge under variable evaporative demand.
We investigated the conceptual capability of Moistube irrigation (MTI) to discharge under zero applied positive pressure and under varied climatic conditions by inducing an artificial evaporative demand (Ed) or negative pressure around Moistube tubing. This study was premised on the null hypothesis...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2020-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0236211 |
id |
doaj-3d1ff6786a124e668b0da14c9574b662 |
---|---|
record_format |
Article |
spelling |
doaj-3d1ff6786a124e668b0da14c9574b6622021-03-04T12:45:51ZengPublic Library of Science (PLoS)PLoS ONE1932-62032020-01-011512e023621110.1371/journal.pone.0236211Moistube irrigation (MTI) discharge under variable evaporative demand.Tinashe Lindel DirwaiAidan SenzanjeTafadzwanashe MabhaudhiWe investigated the conceptual capability of Moistube irrigation (MTI) to discharge under zero applied positive pressure and under varied climatic conditions by inducing an artificial evaporative demand (Ed) or negative pressure around Moistube tubing. This study was premised on the null hypothesis that an artificially induced Ed or negative pressure does not impact MTI discharge. Moistube tubing was enclosed in a 1 m long PVC conduit. A 20 l water reservoir placed on an electronic balance provided a continuous supply of water whilst a three-speed hot air blower facilitated the radiative factor and advection process. The procedure was conducted under varied climatic conditions with three air velocity (ua) treatments namely; 1.2 m.s-1, 2.5 m.s-1, and 3.0 m.s-1 and the experiment run times were 159 h, 134 h and 10 h, respectively. The average temperature (Tave) and relative humidity (RH) data for ua = 1.2 m.s-1 were 53°C and 7.31%, whilst for ua = 2.5 m.s-1, Tave was 56°C and RH = 7.19%, and for ua = 3.0 m.s-1, Tave was 63°C and RH = 6.16%. The experimental data was input into the four variable Penman-Monteith method to compute the evaporative demand (Ed). For each Ed, the instantaneous mass flow rate ([Formula: see text]) was recorded using an electronic balance and subsequently converted to volumetric flow rates. For each of the air velocities, the respective Ed values obtained were 0.16, 0.31 and 0.36 mm.d-1. The Bowen ratios (r) were well below 1 (r < 1), which suggested a sufficient supply of moisture to evaporate. For Ed = 0.16 mm.d-1 the vapour pressure deficit (VPD) was 113.08 mbars, whilst for Ed = 0.31 mm.d-1 and for Ed = 0.36 mm.d-1 the VPD were 129.93 mbars and 150.14 mbars, respectively. The recorded discharges (q) at normalised time (t*) = 1 h for Ed = 0.16 mm.d-1 was 7.67*10-3 l.hr-1.m-1 length, whilst for Ed = 0.31 mm.d-1 q = 14.5*10-3 l.hr-1.m-1 length, and for Ed = 0.36 mm.d-1 q = 20.8*10-3 l.hr-1.m-1 length. The imposed negative pressure causes an exponential increase in Moistube™ discharge, thus disproving the null hypothesis. The higher the evaporative demand the higher the discharge. This phenomenon allows MTI to be used for deficit irrigation purposes and allows irrigators to capitalize on realistic soil matric potential irrigation scheduling approach.https://doi.org/10.1371/journal.pone.0236211 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Tinashe Lindel Dirwai Aidan Senzanje Tafadzwanashe Mabhaudhi |
spellingShingle |
Tinashe Lindel Dirwai Aidan Senzanje Tafadzwanashe Mabhaudhi Moistube irrigation (MTI) discharge under variable evaporative demand. PLoS ONE |
author_facet |
Tinashe Lindel Dirwai Aidan Senzanje Tafadzwanashe Mabhaudhi |
author_sort |
Tinashe Lindel Dirwai |
title |
Moistube irrigation (MTI) discharge under variable evaporative demand. |
title_short |
Moistube irrigation (MTI) discharge under variable evaporative demand. |
title_full |
Moistube irrigation (MTI) discharge under variable evaporative demand. |
title_fullStr |
Moistube irrigation (MTI) discharge under variable evaporative demand. |
title_full_unstemmed |
Moistube irrigation (MTI) discharge under variable evaporative demand. |
title_sort |
moistube irrigation (mti) discharge under variable evaporative demand. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2020-01-01 |
description |
We investigated the conceptual capability of Moistube irrigation (MTI) to discharge under zero applied positive pressure and under varied climatic conditions by inducing an artificial evaporative demand (Ed) or negative pressure around Moistube tubing. This study was premised on the null hypothesis that an artificially induced Ed or negative pressure does not impact MTI discharge. Moistube tubing was enclosed in a 1 m long PVC conduit. A 20 l water reservoir placed on an electronic balance provided a continuous supply of water whilst a three-speed hot air blower facilitated the radiative factor and advection process. The procedure was conducted under varied climatic conditions with three air velocity (ua) treatments namely; 1.2 m.s-1, 2.5 m.s-1, and 3.0 m.s-1 and the experiment run times were 159 h, 134 h and 10 h, respectively. The average temperature (Tave) and relative humidity (RH) data for ua = 1.2 m.s-1 were 53°C and 7.31%, whilst for ua = 2.5 m.s-1, Tave was 56°C and RH = 7.19%, and for ua = 3.0 m.s-1, Tave was 63°C and RH = 6.16%. The experimental data was input into the four variable Penman-Monteith method to compute the evaporative demand (Ed). For each Ed, the instantaneous mass flow rate ([Formula: see text]) was recorded using an electronic balance and subsequently converted to volumetric flow rates. For each of the air velocities, the respective Ed values obtained were 0.16, 0.31 and 0.36 mm.d-1. The Bowen ratios (r) were well below 1 (r < 1), which suggested a sufficient supply of moisture to evaporate. For Ed = 0.16 mm.d-1 the vapour pressure deficit (VPD) was 113.08 mbars, whilst for Ed = 0.31 mm.d-1 and for Ed = 0.36 mm.d-1 the VPD were 129.93 mbars and 150.14 mbars, respectively. The recorded discharges (q) at normalised time (t*) = 1 h for Ed = 0.16 mm.d-1 was 7.67*10-3 l.hr-1.m-1 length, whilst for Ed = 0.31 mm.d-1 q = 14.5*10-3 l.hr-1.m-1 length, and for Ed = 0.36 mm.d-1 q = 20.8*10-3 l.hr-1.m-1 length. The imposed negative pressure causes an exponential increase in Moistube™ discharge, thus disproving the null hypothesis. The higher the evaporative demand the higher the discharge. This phenomenon allows MTI to be used for deficit irrigation purposes and allows irrigators to capitalize on realistic soil matric potential irrigation scheduling approach. |
url |
https://doi.org/10.1371/journal.pone.0236211 |
work_keys_str_mv |
AT tinashelindeldirwai moistubeirrigationmtidischargeundervariableevaporativedemand AT aidansenzanje moistubeirrigationmtidischargeundervariableevaporativedemand AT tafadzwanashemabhaudhi moistubeirrigationmtidischargeundervariableevaporativedemand |
_version_ |
1714801657379815424 |