A Building-Block Favoring Method for the Topology Optimization of Internal Antenna Design
This paper proposes a new design technique for internal antenna development. The proposed method is based on the framework of topology optimization incorporated with three effective mechanisms favoring the building blocks of associated optimization problems. Conventionally, the topology optimization...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2015-01-01
|
Series: | International Journal of Antennas and Propagation |
Online Access: | http://dx.doi.org/10.1155/2015/206243 |
id |
doaj-3d0f1754a66e4ce8bee9cfdd7f3a6cd1 |
---|---|
record_format |
Article |
spelling |
doaj-3d0f1754a66e4ce8bee9cfdd7f3a6cd12020-11-25T00:12:30ZengHindawi LimitedInternational Journal of Antennas and Propagation1687-58691687-58772015-01-01201510.1155/2015/206243206243A Building-Block Favoring Method for the Topology Optimization of Internal Antenna DesignYen-Sheng Chen0Department of Electronic Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Road, Taipei 10608, TaiwanThis paper proposes a new design technique for internal antenna development. The proposed method is based on the framework of topology optimization incorporated with three effective mechanisms favoring the building blocks of associated optimization problems. Conventionally, the topology optimization of antenna structures discretizes a design space into uniform and rectangular pixels. However, the defining length of the resultant building blocks is so large that the problem difficulty arises; furthermore, the order of the building blocks becomes extremely high, so genetic algorithms (GAs) and binary particle swarm optimization (BPSO) are not more efficient than the random search algorithm. In order to form tight linkage groups of building blocks, this paper proposes a novel approach to handle the design details. In particular, a nonuniform discretization is adopted to discretize the design space, and the initialization of GAs is assigned as orthogonal arrays (OAs) instead of a randomized population; moreover, the control map of GAs is constructed by ensuring the schema growth based on the generalized schema theorem. By using the proposed method, two internal antennas are thus successfully developed. The simulated and measured results show that the proposed technique significantly outperforms the conventional topology optimization.http://dx.doi.org/10.1155/2015/206243 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yen-Sheng Chen |
spellingShingle |
Yen-Sheng Chen A Building-Block Favoring Method for the Topology Optimization of Internal Antenna Design International Journal of Antennas and Propagation |
author_facet |
Yen-Sheng Chen |
author_sort |
Yen-Sheng Chen |
title |
A Building-Block Favoring Method for the Topology Optimization of Internal Antenna Design |
title_short |
A Building-Block Favoring Method for the Topology Optimization of Internal Antenna Design |
title_full |
A Building-Block Favoring Method for the Topology Optimization of Internal Antenna Design |
title_fullStr |
A Building-Block Favoring Method for the Topology Optimization of Internal Antenna Design |
title_full_unstemmed |
A Building-Block Favoring Method for the Topology Optimization of Internal Antenna Design |
title_sort |
building-block favoring method for the topology optimization of internal antenna design |
publisher |
Hindawi Limited |
series |
International Journal of Antennas and Propagation |
issn |
1687-5869 1687-5877 |
publishDate |
2015-01-01 |
description |
This paper proposes a new design technique for internal antenna development. The proposed method is based on the framework of topology optimization incorporated with three effective mechanisms favoring the building blocks of associated optimization problems. Conventionally, the topology optimization of antenna structures discretizes a design space into uniform and rectangular pixels. However, the defining length of the resultant building blocks is so large that the problem difficulty arises; furthermore, the order of the building blocks becomes extremely high, so genetic algorithms (GAs) and binary particle swarm optimization (BPSO) are not more efficient than the random search algorithm. In order to form tight linkage groups of building blocks, this paper proposes a novel approach to handle the design details. In particular, a nonuniform discretization is adopted to discretize the design space, and the initialization of GAs is assigned as orthogonal arrays (OAs) instead of a randomized population; moreover, the control map of GAs is constructed by ensuring the schema growth based on the generalized schema theorem. By using the proposed method, two internal antennas are thus successfully developed. The simulated and measured results show that the proposed technique significantly outperforms the conventional topology optimization. |
url |
http://dx.doi.org/10.1155/2015/206243 |
work_keys_str_mv |
AT yenshengchen abuildingblockfavoringmethodforthetopologyoptimizationofinternalantennadesign AT yenshengchen buildingblockfavoringmethodforthetopologyoptimizationofinternalantennadesign |
_version_ |
1725399293428236288 |