A Building-Block Favoring Method for the Topology Optimization of Internal Antenna Design

This paper proposes a new design technique for internal antenna development. The proposed method is based on the framework of topology optimization incorporated with three effective mechanisms favoring the building blocks of associated optimization problems. Conventionally, the topology optimization...

Full description

Bibliographic Details
Main Author: Yen-Sheng Chen
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2015/206243
Description
Summary:This paper proposes a new design technique for internal antenna development. The proposed method is based on the framework of topology optimization incorporated with three effective mechanisms favoring the building blocks of associated optimization problems. Conventionally, the topology optimization of antenna structures discretizes a design space into uniform and rectangular pixels. However, the defining length of the resultant building blocks is so large that the problem difficulty arises; furthermore, the order of the building blocks becomes extremely high, so genetic algorithms (GAs) and binary particle swarm optimization (BPSO) are not more efficient than the random search algorithm. In order to form tight linkage groups of building blocks, this paper proposes a novel approach to handle the design details. In particular, a nonuniform discretization is adopted to discretize the design space, and the initialization of GAs is assigned as orthogonal arrays (OAs) instead of a randomized population; moreover, the control map of GAs is constructed by ensuring the schema growth based on the generalized schema theorem. By using the proposed method, two internal antennas are thus successfully developed. The simulated and measured results show that the proposed technique significantly outperforms the conventional topology optimization.
ISSN:1687-5869
1687-5877