Regulation of N<sub>2</sub>O emissions from acid organic soil drained for agriculture

<p>Organic soils drained for crop production or grazing land are agroecosystems with potentially high but variable emissions of nitrous oxide (<span class="inline-formula">N<sub>2</sub>O</span>). The present study investigated the regulation of <span class=...

Full description

Bibliographic Details
Main Authors: A. Taghizadeh-Toosi, L. Elsgaard, T. J. Clough, R. Labouriau, V. Ernstsen, S. O. Petersen
Format: Article
Language:English
Published: Copernicus Publications 2019-11-01
Series:Biogeosciences
Online Access:https://www.biogeosciences.net/16/4555/2019/bg-16-4555-2019.pdf
Description
Summary:<p>Organic soils drained for crop production or grazing land are agroecosystems with potentially high but variable emissions of nitrous oxide (<span class="inline-formula">N<sub>2</sub>O</span>). The present study investigated the regulation of <span class="inline-formula">N<sub>2</sub>O</span> emissions in a raised bog area drained for agriculture, which is classified as potentially acid sulfate soil. We hypothesised that pyrite (<span class="inline-formula">FeS<sub>2</sub></span>) oxidation was a potential driver of <span class="inline-formula">N<sub>2</sub>O</span> emissions through microbially mediated reduction of nitrate (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="a02883d0956e7dc256b9fe9fffa70b09"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-4555-2019-ie00001.svg" width="25pt" height="16pt" src="bg-16-4555-2019-ie00001.png"/></svg:svg></span></span>). Two sites with rotational grass, and two sites with a potato crop, were equipped for monitoring of <span class="inline-formula">N<sub>2</sub>O</span> emissions and soil <span class="inline-formula">N<sub>2</sub>O</span> concentrations at the 5, 10, 20, 50 and 100&thinsp;cm depth during weekly field campaigns in spring and autumn 2015. Further data acquisition included temperature, precipitation, soil moisture, water table (WT) depth, and soil <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="dd23f13eb24280cbe650be4567ce8571"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-4555-2019-ie00002.svg" width="25pt" height="16pt" src="bg-16-4555-2019-ie00002.png"/></svg:svg></span></span> and ammonium (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn><mo>+</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8cff18dc7544e09830abea500d71300b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-4555-2019-ie00003.svg" width="24pt" height="15pt" src="bg-16-4555-2019-ie00003.png"/></svg:svg></span></span>) concentrations. At all sites, the soil was acidic, with pH ranging from 4.7 to 5.4. Spring and autumn monitoring periods together represented between 152 and 174&thinsp;d, with cumulative emissions of 4–5&thinsp;kg&thinsp;<span class="inline-formula">N<sub>2</sub>O</span>-N&thinsp;ha<span class="inline-formula"><sup>−1</sup></span> at sites with rotational grass and 20–50&thinsp;kg&thinsp;<span class="inline-formula">N<sub>2</sub>O</span>-N&thinsp;ha<span class="inline-formula"><sup>−1</sup></span> at sites with a potato crop. Equivalent soil gas-phase concentrations of <span class="inline-formula">N<sub>2</sub>O</span> at grassland sites varied between 0 and 25&thinsp;<span class="inline-formula">µ</span>L&thinsp;L<span class="inline-formula"><sup>−1</sup></span> except for a sampling after slurry application at one of the sites in spring, with a maximum of 560&thinsp;<span class="inline-formula">µ</span>L&thinsp;L<span class="inline-formula"><sup>−1</sup></span> at the 1&thinsp;m depth. At the two potato sites the levels of below-ground <span class="inline-formula">N<sub>2</sub>O</span> concentrations ranged from 0.4 to 2270&thinsp;<span class="inline-formula">µ</span>L&thinsp;L<span class="inline-formula"><sup>−1</sup></span> and from 0.1 to 470&thinsp;<span class="inline-formula">µ</span>L&thinsp;L<span class="inline-formula"><sup>−1</sup></span>, in accordance with the higher soil mineral N availability at arable sites. Statistical analyses using graphical models showed that soil <span class="inline-formula">N<sub>2</sub>O</span> concentration in the capillary fringe (i.e. the soil volume above the water table influenced by tension saturation) was the strongest predictor of <span class="inline-formula">N<sub>2</sub>O</span> emissions in spring and, for grassland sites, also in the autumn. For potato sites in autumn, there was evidence that <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M28" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn><mo>-</mo></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="da99f0b0265c157ce21f9580f34f8fd2"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-16-4555-2019-ie00004.svg" width="25pt" height="16pt" src="bg-16-4555-2019-ie00004.png"/></svg:svg></span></span> availability in the topsoil and temperature were the main controls on <span class="inline-formula">N<sub>2</sub>O</span> emissions. Chemical analyses of intact soil cores from the 0 to 1&thinsp;m depth, collected at adjacent grassland and potato sites, showed that the total reduction capacity of the peat soil (assessed by cerium(IV) reduction) was much higher than that represented by <span class="inline-formula">FeS<sub>2</sub></span>, and the concentrations of total reactive iron (TRFe) were higher than those of <span class="inline-formula">FeS<sub>2</sub></span>. Based on the statistical graphical models and the tentative estimates of reduction capacities, <span class="inline-formula">FeS<sub>2</sub></span> oxidation was unlikely to be important for <span class="inline-formula">N<sub>2</sub>O</span> emissions. Instead, archaeal ammonia oxidation and either chemodenitrification or nitrifier denitrification were considered to be plausible pathways of <span class="inline-formula">N<sub>2</sub>O</span> production in spring, whereas in the autumn heterotrophic denitrification may have been more important at arable sites.</p>
ISSN:1726-4170
1726-4189