The Molecular Function of PURA and Its Implications in Neurological Diseases
In recent years, genome-wide analyses of patients have resulted in the identification of a number of neurodevelopmental disorders. Several of them are caused by mutations in genes that encode for RNA-binding proteins. One of these genes is PURA, for which in 2014 mutations have been shown to cause t...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-03-01
|
Series: | Frontiers in Genetics |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fgene.2021.638217/full |
id |
doaj-3cf0d96c279d47bdbb000c1536391acb |
---|---|
record_format |
Article |
spelling |
doaj-3cf0d96c279d47bdbb000c1536391acb2021-03-11T04:31:44ZengFrontiers Media S.A.Frontiers in Genetics1664-80212021-03-011210.3389/fgene.2021.638217638217The Molecular Function of PURA and Its Implications in Neurological DiseasesLena Molitor0Sabrina Bacher1Sandra Burczyk2Dierk Niessing3Dierk Niessing4Institute of Structural Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, GermanyInstitute of Structural Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, GermanyInstitute of Pharmaceutical Biotechnology, Ulm University, Ulm, GermanyInstitute of Structural Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, GermanyInstitute of Pharmaceutical Biotechnology, Ulm University, Ulm, GermanyIn recent years, genome-wide analyses of patients have resulted in the identification of a number of neurodevelopmental disorders. Several of them are caused by mutations in genes that encode for RNA-binding proteins. One of these genes is PURA, for which in 2014 mutations have been shown to cause the neurodevelopmental disorder PURA syndrome. Besides intellectual disability (ID), patients develop a variety of symptoms, including hypotonia, metabolic abnormalities as well as epileptic seizures. This review aims to provide a comprehensive assessment of research of the last 30 years on PURA and its recently discovered involvement in neuropathological abnormalities. Being a DNA- and RNA-binding protein, PURA has been implicated in transcriptional control as well as in cytoplasmic RNA localization. Molecular interactions are described and rated according to their validation state as physiological targets. This information will be put into perspective with available structural and biophysical insights on PURA’s molecular functions. Two different knock-out mouse models have been reported with partially contradicting observations. They are compared and put into context with cell biological observations and patient-derived information. In addition to PURA syndrome, the PURA protein has been found in pathological, RNA-containing foci of patients with the RNA-repeat expansion diseases such as fragile X-associated tremor ataxia syndrome (FXTAS) and amyotrophic lateral sclerosis (ALS)/fronto-temporal dementia (FTD) spectrum disorder. We discuss the potential role of PURA in these neurodegenerative disorders and existing evidence that PURA might act as a neuroprotective factor. In summary, this review aims at informing researchers as well as clinicians on our current knowledge of PURA’s molecular and cellular functions as well as its implications in very different neuronal disorders.https://www.frontiersin.org/articles/10.3389/fgene.2021.638217/fullPURA syndromeamyotrophic lateral sclerosis/fronto-temporal dementiafragile X-associated tremor ataxia syndromePur-alphaPURBPURG |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lena Molitor Sabrina Bacher Sandra Burczyk Dierk Niessing Dierk Niessing |
spellingShingle |
Lena Molitor Sabrina Bacher Sandra Burczyk Dierk Niessing Dierk Niessing The Molecular Function of PURA and Its Implications in Neurological Diseases Frontiers in Genetics PURA syndrome amyotrophic lateral sclerosis/fronto-temporal dementia fragile X-associated tremor ataxia syndrome Pur-alpha PURB PURG |
author_facet |
Lena Molitor Sabrina Bacher Sandra Burczyk Dierk Niessing Dierk Niessing |
author_sort |
Lena Molitor |
title |
The Molecular Function of PURA and Its Implications in Neurological Diseases |
title_short |
The Molecular Function of PURA and Its Implications in Neurological Diseases |
title_full |
The Molecular Function of PURA and Its Implications in Neurological Diseases |
title_fullStr |
The Molecular Function of PURA and Its Implications in Neurological Diseases |
title_full_unstemmed |
The Molecular Function of PURA and Its Implications in Neurological Diseases |
title_sort |
molecular function of pura and its implications in neurological diseases |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Genetics |
issn |
1664-8021 |
publishDate |
2021-03-01 |
description |
In recent years, genome-wide analyses of patients have resulted in the identification of a number of neurodevelopmental disorders. Several of them are caused by mutations in genes that encode for RNA-binding proteins. One of these genes is PURA, for which in 2014 mutations have been shown to cause the neurodevelopmental disorder PURA syndrome. Besides intellectual disability (ID), patients develop a variety of symptoms, including hypotonia, metabolic abnormalities as well as epileptic seizures. This review aims to provide a comprehensive assessment of research of the last 30 years on PURA and its recently discovered involvement in neuropathological abnormalities. Being a DNA- and RNA-binding protein, PURA has been implicated in transcriptional control as well as in cytoplasmic RNA localization. Molecular interactions are described and rated according to their validation state as physiological targets. This information will be put into perspective with available structural and biophysical insights on PURA’s molecular functions. Two different knock-out mouse models have been reported with partially contradicting observations. They are compared and put into context with cell biological observations and patient-derived information. In addition to PURA syndrome, the PURA protein has been found in pathological, RNA-containing foci of patients with the RNA-repeat expansion diseases such as fragile X-associated tremor ataxia syndrome (FXTAS) and amyotrophic lateral sclerosis (ALS)/fronto-temporal dementia (FTD) spectrum disorder. We discuss the potential role of PURA in these neurodegenerative disorders and existing evidence that PURA might act as a neuroprotective factor. In summary, this review aims at informing researchers as well as clinicians on our current knowledge of PURA’s molecular and cellular functions as well as its implications in very different neuronal disorders. |
topic |
PURA syndrome amyotrophic lateral sclerosis/fronto-temporal dementia fragile X-associated tremor ataxia syndrome Pur-alpha PURB PURG |
url |
https://www.frontiersin.org/articles/10.3389/fgene.2021.638217/full |
work_keys_str_mv |
AT lenamolitor themolecularfunctionofpuraanditsimplicationsinneurologicaldiseases AT sabrinabacher themolecularfunctionofpuraanditsimplicationsinneurologicaldiseases AT sandraburczyk themolecularfunctionofpuraanditsimplicationsinneurologicaldiseases AT dierkniessing themolecularfunctionofpuraanditsimplicationsinneurologicaldiseases AT dierkniessing themolecularfunctionofpuraanditsimplicationsinneurologicaldiseases AT lenamolitor molecularfunctionofpuraanditsimplicationsinneurologicaldiseases AT sabrinabacher molecularfunctionofpuraanditsimplicationsinneurologicaldiseases AT sandraburczyk molecularfunctionofpuraanditsimplicationsinneurologicaldiseases AT dierkniessing molecularfunctionofpuraanditsimplicationsinneurologicaldiseases AT dierkniessing molecularfunctionofpuraanditsimplicationsinneurologicaldiseases |
_version_ |
1724226002655117312 |