Picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242X-2002-703904-i1.gif"/></inline-formula>-accretive operators
<p/> <p>Let <inline-formula><graphic file="1029-242X-2002-703904-i2.gif"/></inline-formula> be an arbitrary real normed linear space and let <inline-formula><graphic file="1029-242X-2002-703904-i3.gif"/></inline-formula> be a <in...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2002-01-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/7/703904 |
id |
doaj-3ce1de50c53249bd8267b33a94c67ed4 |
---|---|
record_format |
Article |
spelling |
doaj-3ce1de50c53249bd8267b33a94c67ed42020-11-24T21:05:36ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2002-01-0120021703904Picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242X-2002-703904-i1.gif"/></inline-formula>-accretive operatorsMoore Chika<p/> <p>Let <inline-formula><graphic file="1029-242X-2002-703904-i2.gif"/></inline-formula> be an arbitrary real normed linear space and let <inline-formula><graphic file="1029-242X-2002-703904-i3.gif"/></inline-formula> be a <inline-formula><graphic file="1029-242X-2002-703904-i4.gif"/></inline-formula>-Lipschitz strongly <inline-formula><graphic file="1029-242X-2002-703904-i5.gif"/></inline-formula>-accretive operator. It is proved that Picard-like iteration processes converge strongly to the unique solutions of the operator equations <inline-formula><graphic file="1029-242X-2002-703904-i6.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2002-703904-i7.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-2002-703904-i8.gif"/></inline-formula> is an arbitrary but fixed vector. Related results deal with the strong convergence of Picard-like iteration processes to the unique solution of equations involving linear <inline-formula><graphic file="1029-242X-2002-703904-i9.gif"/></inline-formula>-positive definite ( <inline-formula><graphic file="1029-242X-2002-703904-i10.gif"/></inline-formula>-p.d) operators. Nontrivial examples, indicating that this class of mappings properly contains the classes of nonlinear accretive, dissipative and linear <inline-formula><graphic file="1029-242X-2002-703904-i11.gif"/></inline-formula>-p.d. operators, are also given.</p>http://www.journalofinequalitiesandapplications.com/content/7/703904<it>K</it>-accretiveNormed linear spacesPicard-like iterationsStrong convergenceNonlinear equations |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Moore Chika |
spellingShingle |
Moore Chika Picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242X-2002-703904-i1.gif"/></inline-formula>-accretive operators Journal of Inequalities and Applications <it>K</it>-accretive Normed linear spaces Picard-like iterations Strong convergence Nonlinear equations |
author_facet |
Moore Chika |
author_sort |
Moore Chika |
title |
Picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242X-2002-703904-i1.gif"/></inline-formula>-accretive operators |
title_short |
Picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242X-2002-703904-i1.gif"/></inline-formula>-accretive operators |
title_full |
Picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242X-2002-703904-i1.gif"/></inline-formula>-accretive operators |
title_fullStr |
Picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242X-2002-703904-i1.gif"/></inline-formula>-accretive operators |
title_full_unstemmed |
Picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242X-2002-703904-i1.gif"/></inline-formula>-accretive operators |
title_sort |
picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242x-2002-703904-i1.gif"/></inline-formula>-accretive operators |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
2002-01-01 |
description |
<p/> <p>Let <inline-formula><graphic file="1029-242X-2002-703904-i2.gif"/></inline-formula> be an arbitrary real normed linear space and let <inline-formula><graphic file="1029-242X-2002-703904-i3.gif"/></inline-formula> be a <inline-formula><graphic file="1029-242X-2002-703904-i4.gif"/></inline-formula>-Lipschitz strongly <inline-formula><graphic file="1029-242X-2002-703904-i5.gif"/></inline-formula>-accretive operator. It is proved that Picard-like iteration processes converge strongly to the unique solutions of the operator equations <inline-formula><graphic file="1029-242X-2002-703904-i6.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2002-703904-i7.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-2002-703904-i8.gif"/></inline-formula> is an arbitrary but fixed vector. Related results deal with the strong convergence of Picard-like iteration processes to the unique solution of equations involving linear <inline-formula><graphic file="1029-242X-2002-703904-i9.gif"/></inline-formula>-positive definite ( <inline-formula><graphic file="1029-242X-2002-703904-i10.gif"/></inline-formula>-p.d) operators. Nontrivial examples, indicating that this class of mappings properly contains the classes of nonlinear accretive, dissipative and linear <inline-formula><graphic file="1029-242X-2002-703904-i11.gif"/></inline-formula>-p.d. operators, are also given.</p> |
topic |
<it>K</it>-accretive Normed linear spaces Picard-like iterations Strong convergence Nonlinear equations |
url |
http://www.journalofinequalitiesandapplications.com/content/7/703904 |
work_keys_str_mv |
AT moorechika picardlikeiterationsfornonlinearequationsinvolvinginlineformulagraphicfile1029242x2002703904i1gifinlineformulaaccretiveoperators |
_version_ |
1716768190323752960 |