Picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242X-2002-703904-i1.gif"/></inline-formula>-accretive operators

<p/> <p>Let <inline-formula><graphic file="1029-242X-2002-703904-i2.gif"/></inline-formula> be an arbitrary real normed linear space and let <inline-formula><graphic file="1029-242X-2002-703904-i3.gif"/></inline-formula> be a <in...

Full description

Bibliographic Details
Main Author: Moore Chika
Format: Article
Language:English
Published: SpringerOpen 2002-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://www.journalofinequalitiesandapplications.com/content/7/703904
id doaj-3ce1de50c53249bd8267b33a94c67ed4
record_format Article
spelling doaj-3ce1de50c53249bd8267b33a94c67ed42020-11-24T21:05:36ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2002-01-0120021703904Picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242X-2002-703904-i1.gif"/></inline-formula>-accretive operatorsMoore Chika<p/> <p>Let <inline-formula><graphic file="1029-242X-2002-703904-i2.gif"/></inline-formula> be an arbitrary real normed linear space and let <inline-formula><graphic file="1029-242X-2002-703904-i3.gif"/></inline-formula> be a <inline-formula><graphic file="1029-242X-2002-703904-i4.gif"/></inline-formula>-Lipschitz strongly <inline-formula><graphic file="1029-242X-2002-703904-i5.gif"/></inline-formula>-accretive operator. It is proved that Picard-like iteration processes converge strongly to the unique solutions of the operator equations <inline-formula><graphic file="1029-242X-2002-703904-i6.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2002-703904-i7.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-2002-703904-i8.gif"/></inline-formula> is an arbitrary but fixed vector. Related results deal with the strong convergence of Picard-like iteration processes to the unique solution of equations involving linear <inline-formula><graphic file="1029-242X-2002-703904-i9.gif"/></inline-formula>-positive definite ( <inline-formula><graphic file="1029-242X-2002-703904-i10.gif"/></inline-formula>-p.d) operators. Nontrivial examples, indicating that this class of mappings properly contains the classes of nonlinear accretive, dissipative and linear <inline-formula><graphic file="1029-242X-2002-703904-i11.gif"/></inline-formula>-p.d. operators, are also given.</p>http://www.journalofinequalitiesandapplications.com/content/7/703904<it>K</it>-accretiveNormed linear spacesPicard-like iterationsStrong convergenceNonlinear equations
collection DOAJ
language English
format Article
sources DOAJ
author Moore Chika
spellingShingle Moore Chika
Picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242X-2002-703904-i1.gif"/></inline-formula>-accretive operators
Journal of Inequalities and Applications
<it>K</it>-accretive
Normed linear spaces
Picard-like iterations
Strong convergence
Nonlinear equations
author_facet Moore Chika
author_sort Moore Chika
title Picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242X-2002-703904-i1.gif"/></inline-formula>-accretive operators
title_short Picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242X-2002-703904-i1.gif"/></inline-formula>-accretive operators
title_full Picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242X-2002-703904-i1.gif"/></inline-formula>-accretive operators
title_fullStr Picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242X-2002-703904-i1.gif"/></inline-formula>-accretive operators
title_full_unstemmed Picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242X-2002-703904-i1.gif"/></inline-formula>-accretive operators
title_sort picard-like iterations for nonlinear equations involving <inline-formula><graphic file="1029-242x-2002-703904-i1.gif"/></inline-formula>-accretive operators
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1025-5834
1029-242X
publishDate 2002-01-01
description <p/> <p>Let <inline-formula><graphic file="1029-242X-2002-703904-i2.gif"/></inline-formula> be an arbitrary real normed linear space and let <inline-formula><graphic file="1029-242X-2002-703904-i3.gif"/></inline-formula> be a <inline-formula><graphic file="1029-242X-2002-703904-i4.gif"/></inline-formula>-Lipschitz strongly <inline-formula><graphic file="1029-242X-2002-703904-i5.gif"/></inline-formula>-accretive operator. It is proved that Picard-like iteration processes converge strongly to the unique solutions of the operator equations <inline-formula><graphic file="1029-242X-2002-703904-i6.gif"/></inline-formula> and <inline-formula><graphic file="1029-242X-2002-703904-i7.gif"/></inline-formula> where <inline-formula><graphic file="1029-242X-2002-703904-i8.gif"/></inline-formula> is an arbitrary but fixed vector. Related results deal with the strong convergence of Picard-like iteration processes to the unique solution of equations involving linear <inline-formula><graphic file="1029-242X-2002-703904-i9.gif"/></inline-formula>-positive definite ( <inline-formula><graphic file="1029-242X-2002-703904-i10.gif"/></inline-formula>-p.d) operators. Nontrivial examples, indicating that this class of mappings properly contains the classes of nonlinear accretive, dissipative and linear <inline-formula><graphic file="1029-242X-2002-703904-i11.gif"/></inline-formula>-p.d. operators, are also given.</p>
topic <it>K</it>-accretive
Normed linear spaces
Picard-like iterations
Strong convergence
Nonlinear equations
url http://www.journalofinequalitiesandapplications.com/content/7/703904
work_keys_str_mv AT moorechika picardlikeiterationsfornonlinearequationsinvolvinginlineformulagraphicfile1029242x2002703904i1gifinlineformulaaccretiveoperators
_version_ 1716768190323752960