Akt Phosphorylation Influences Persistent Chlamydial Infection and Chlamydia-Induced Golgi Fragmentation Without Involving Rab14

Chlamydia trachomatis is an obligate intracellular bacterium that causes multiple diseases involving the eyes, gastrointestinal tract, and genitourinary system. Previous studies have identified that in acute chlamydial infection, C. trachomatis requires Akt pathway phosphorylation and Rab14-positive...

Full description

Bibliographic Details
Main Authors: Xiaobao Huang, Jinfeng Tan, Xiaohong Chen, Mingna Liu, Huiling Zhu, Wenjing Li, Zhenjian He, Jiande Han, Chunguang Ma
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-06-01
Series:Frontiers in Cellular and Infection Microbiology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fcimb.2021.675890/full
Description
Summary:Chlamydia trachomatis is an obligate intracellular bacterium that causes multiple diseases involving the eyes, gastrointestinal tract, and genitourinary system. Previous studies have identified that in acute chlamydial infection, C. trachomatis requires Akt pathway phosphorylation and Rab14-positive vesicles to transmit essential lipids from the Golgi apparatus in survival and replication. However, the roles that Akt phosphorylation and Rab14 play in persistent chlamydial infection remain unclear. Here, we discovered that the level of Akt phosphorylation was lower in persistent chlamydial infection, and positively correlated with the effect of activating the development of Chlamydia but did not change the infectivity and 16s rRNA gene expression. Rab14 was found to exert a limited effect on persistent infection. Akt phosphorylation might regulate Chlamydia development and Chlamydia-induced Golgi fragmentation in persistent infection without involving Rab14. Our results provide a new insight regarding the potential of synergistic repressive effects of an Akt inhibitor with antibiotics in the treatment of persistent chlamydial infection induced by penicillin.
ISSN:2235-2988