Electrostatic Discharge Characteristics of SiGe Source/Drain PNN Tunnel FET

Gate-grounded tunnel field effect transistors (ggTFETs) are considered as basic electrostatic discharge (ESD) protection devices in TFET-integrated circuits. ESD test method of transmission line pulse is used to deeply analyze the current characteristics and working mechanism of Conventional TFET ES...

Full description

Bibliographic Details
Main Authors: You Wang, Yu Mao, Qizheng Ji, Ming Yang, Zhaonian Yang, Hai Lin
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/4/454
Description
Summary:Gate-grounded tunnel field effect transistors (ggTFETs) are considered as basic electrostatic discharge (ESD) protection devices in TFET-integrated circuits. ESD test method of transmission line pulse is used to deeply analyze the current characteristics and working mechanism of Conventional TFET ESD impact. On this basis, a SiGe Source/Drain PNN (P+N+N+) tunnel field effect transistors (TFET) was proposed, which was simulated by Sentaurus technology computer aided design (TCAD) software. Simulation results showed that the trigger voltage of SiGe PNN TFET was 46.3% lower, and the failure current was 13.3% higher than Conventional TFET. After analyzing the simulation results, the parameters of the SiGe PNN TFET were optimized. The single current path of the SiGe PNN TFET was analyzed and explained in the case of gate grounding.
ISSN:2079-9292